matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert beweis
Grenzwert beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Sa 05.11.2005
Autor: AriR

Hey Leute hab folgende Folge gegeben :
[mm] a_{n}= \bruch{3*n^{2}}{n^{2}+3} [/mm]

durch probieren habe ich herausgefunden, dass der Grenzwert möglicherweise "3" ist. Jetzt ist dies noch zu beweisen:

d.h. per definition gibt es ein  [mm] \varepsilon [/mm] >0 und [mm] N€\IN [/mm] für die gelten:
[mm] |\bruch{3*n^{2}}{n^{2}+3} [/mm] - 3 | < [mm] \varepsilon [/mm] für alle n [mm] \ge [/mm] N

[mm] |\bruch{6}{n^{2}+3}|< \varepsilon [/mm]

dann habe ich ausgerechnet was ich für n einsetzen kann um
[mm] |\bruch{6}{n^{2}+3}|= \varepsilon [/mm] zu erhalten, nämlich  [mm] \wurzel{\bruch{6}{\varepsilon}-3}. [/mm] Jetzt weiß ich, das wenn ich das für n in [mm] a_{n} [/mm] einsetze ich epsilon enthalte, da aber [mm] n€\IN, [/mm] kann ich nach archimedes sagen, dass es sicher eine nächstgrößere natürliche Zahl zu [mm] \bruch{6}{n^{2}+3}gibt [/mm] (welches dann N ist), zu der man sagen kann, wenn man sie für n einsetzt, [mm] a_{n} [/mm] kleiner ist für [mm] \varepsilon [/mm] für alle [mm] n\ge [/mm] N

qed.

ist das so ein richtiger beweis??

        
Bezug
Grenzwert beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Sa 05.11.2005
Autor: mathmetzsch

Hallo Ari,

also bevor du mit der  [mm] \varepsilon [/mm] -Definition hantierst, würde ich immer erst mal die Grenzwertsätze benutzen und das geht bei der Folge sehr gut.

Du erweiterst deinen Bruch mit [mm] \bruch{1}{n^{2}} [/mm] und siehst was passiert:

[mm] \bruch{3n^{2}}{3+n^{2}} [/mm]
[mm] =\bruch{3}{3/n^{2}+1} [/mm]

[mm] 3/n^{2} [/mm] ist eine Nullfolge für n gegen unendlich und daher folgt mit den Grenzwertsätzen
[mm] \limes_{n\rightarrow\infty}\bruch{3}{3/n^{2}+1}=\bruch{3}{0+1}=3 [/mm]

Da hast du also richtig vermutet.

VG mathmetzsch

Bezug
                
Bezug
Grenzwert beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Sa 05.11.2005
Autor: AriR

der weg ist sicher viel eleganter, aber wir hatten den beweis für 3/n² in der vorlesung noch nicht und daher müsste ich das dann auch im beweis beweisen. ist den mein weg so wie ich ihn gegangen bin falsch?

Bezug
                        
Bezug
Grenzwert beweis: siehe unten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 Sa 05.11.2005
Autor: Loddar

Hallo Ari!


Siehe meine Antwort unten ...


Bis auf einen kleinen Rechenfehler ist Dein Weg völlig okay [daumenhoch] !!


Gruß
Loddar


Bezug
        
Bezug
Grenzwert beweis: Ergänzung / Rechenfehler
Status: (Antwort) fertig Status 
Datum: 12:29 Sa 05.11.2005
Autor: Loddar

Hallo Ari!


Auch Dein Beweis / Nachweis mit dem [mm] $\varepsilon$-Kriterium [/mm] ist richtig [ok] !!


Allerdings hast Du Dich etwas verrechnet:

[mm] $\left| \ a_n-a \ \right| [/mm] \ = \ [mm] \left| \ \bruch{3n^2}{n^2+3}-3 \ \right| [/mm] \ = \ [mm] \left| \ \bruch{\red{-9}}{n^2+3} \ \right| [/mm] \ = \ [mm] \bruch{9}{n^2+3} [/mm] \ < \ [mm] \varepsilon$ $\gdw$ $N(\varepsilon) [/mm] \ > \ [mm] \wurzel{\bruch{\red{9}}{\varepsilon}-3 \ }$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Grenzwert beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 Sa 05.11.2005
Autor: AriR

vielen dank.. warst eine riesen hilfe =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]