matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert der Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert der Folge
Grenzwert der Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert der Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 Do 29.12.2005
Autor: melb

Aufgabe
Berechnen Sie den Grenzwert der Folge ( [mm] x_{k})_{k\in\IN}: [/mm]

[mm] x_{k}=k-\wurzel{(k-1)(k-2)} [/mm]

Also meine Frage: Wie mache ich das ?
Ich habe versucht [mm] \wurzel{k-1} [/mm] z.B als [mm] \wurzel{k} [/mm] aufzufassen, was aber nicht geht: da dann lim (k) - lim(k) =0 wäre.
Der Grenzwert ist aber 1,5. Ich habe bei der Limesbildung von Wurzeln im allg. große schwierigkeiten.
Was wäre nun ein möglicher Ansatz für diese Aufgabe?

Danke, Melanie

        
Bezug
Grenzwert der Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Do 29.12.2005
Autor: Karl_Pech

Hallo Melanie,


> Berechnen Sie den Grenzwert der Folge
>
>
> [mm]\left(x_{k}\right)_{k\in\IN}:[/mm]
>
>  
> [mm]x_{k}= k - \wurzel{(k-1)(k-2)}[/mm]


Ich würde diesen Ausdruck als einen Bruch betrachten:


[mm]\frac{k-\sqrt{(k-1)(k-2)}}{1}[/mm]


und Brüche kann man ja erweitern! ;-)


Welche Erweiterung wäre den hier sinnvoll? Das Minus erinnert einen doch an die 3te binomische Formel, oder? Dann erhalten wir nämlich:


[mm]\frac{\left(k - \sqrt{(k-1)(k-2)}\right)\left(k + \sqrt{(k-1)(k-2)}\right)}{k + \sqrt{(k-1)(k-2)}}[/mm]


Gehe nun folgendermaßen vor:


1.) Multipliziere den Zähler aus, und fasse zusammen. [Du erhälst einen kurzen Term.]

2.) Klammere im Zähler und im Nenner das [mm]k[/mm] aus! Mit anderen Worten: Kürze deinen Bruch durch [mm]k[/mm].

3.) Es gilt: [mm]a = \sqrt{a^2}[/mm] und [mm]\frac{\sqrt{a}}{\sqrt{b}}= \sqrt{\frac{a}{b}}[/mm].

4.) Vereinfache den Bruch in der Wurzel.

5.) Bilde den Grenzwert im Zähler und Nenner.

6.) Gehe zur nächsten Aufgabe! ;-)



Viele Grüße
Karl





Bezug
                
Bezug
Grenzwert der Folge: (off-topic)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Do 29.12.2005
Autor: Loddar

Hallo Karl!


> 6.) Gehe zur nächsten Aufgabe! ;-)

[ok] Gehen Sie direkt dort hin, gehen Sie nicht über "Los" und ziehen Sie keine DM 4000 ein. [grins]


Gruß
Loddar


Bezug
                        
Bezug
Grenzwert der Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Do 29.12.2005
Autor: Karl_Pech

Lieber Loddar!


> > 6.) Gehe zur nächsten Aufgabe! ;-)
>  
> [ok] Gehen Sie direkt dort hin, gehen Sie nicht über "Los"
> und ziehen Sie keine DM 4000 ein. [grins]


[totlach]


Hmm, das ist ja wirklich schlimm (mit mir) [grins]; Ich wollte eigentlich warten bis ich meinen 4ten Stern hole! Aber meine Enthaltsamkeit hier war von kurzer Dauer. [laugh]



Viele Grüße
Karl
[ueberraschung]




Bezug
                
Bezug
Grenzwert der Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Do 29.12.2005
Autor: melb

Schade auf das Erweitern komme ich leider nie.

Also : nach dem kürzen

[mm] \limes_{k\rightarrow\infty}\bruch{3-\bruch{2}{k}}{1+\bruch{\wurzel{(k-1)(k-2}}{k}} [/mm]

Im Zähler ist der Limes 3, aber der Nenner ist mir nicht klar, denn der hat den Limes 1, daraus folgt das der Limes der gesamten folge 3 wäre. Was doch aber nicht stimmt.

Was mache ich bloss falsch, kann ich nicht mehr rechnen?



Bezug
                        
Bezug
Grenzwert der Folge: aus Wurzel ausklammern
Status: (Antwort) fertig Status 
Datum: 16:34 Do 29.12.2005
Autor: Loddar

Hallo melb!


Mir scheint, Du hast im Nenner falsch aus der Wurzel den Wert [mm] $k^2$ [/mm] ausgeklammert:

[mm] $\wurzel{(k-1)*(k-2)} [/mm] \ = \ [mm] \wurzel{k^2-3k+2} [/mm] \ = \ [mm] \wurzel{k^2*\left(1-\bruch{3}{k}+\bruch{2}{k^2}\right) \ } [/mm] \ = \ [mm] \wurzel{k^2}*\wurzel{1-\bruch{3}{k}+\bruch{2}{k^2}} [/mm] \ = \ [mm] k*\wurzel{1-\bruch{3}{k}+\bruch{2}{k^2}}$ [/mm]


Nun klar(er)? Welches Ergebnis erhältst Du nun?


Gruß
Loddar


Bezug
                                
Bezug
Grenzwert der Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Do 29.12.2005
Autor: melb

^^ ja nun komme ich natürlich auf 2 und die Gesamtfolge hat nun den Grenzwert 3/2 so wie das auch sein muss.

Ich hatte das [mm] k^{2} [/mm] leider gar nicht aus der Wurzel rausgeholt, geschweige denn ausgeklammert.

Ich hatte einfach  [mm] \limes_{k\rightarrow\infty} \bruch{\wurzel{k-1}}{k} [/mm] und [mm] \limes_{k\rightarrow\infty} \bruch{\wurzel{k-2}}{k} [/mm] betrachtet und das sind für mich Nullfolgen, was aber gar nicht stimmte, wie ich festellen musste ,wenn ich mal nur vernüftigt umgestellt hätte ^^ und rechenregeln beachtet hätte. Dann hätte ich gesehen, das auch diese zwei Grenzwert gegen 1 laufen und nicht gegen null.

Ich danke euch auf jedenfall...mit dieser aufgabe quäle ich mich schon seit ein paar stunden...ich werde mir mal schnell neue folgen mit wurzel suchen und üben, sofern ich welche finde.



Bezug
                                        
Bezug
Grenzwert der Folge: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Do 29.12.2005
Autor: Loddar

Hallo melb!


> ja nun komme ich natürlich auf 2 und die Gesamtfolge hat
> nun den Grenzwert 3/2 so wie das auch sein muss.

[daumenhoch]



> Ich hatte einfach  [mm]\limes_{k\rightarrow\infty} \bruch{\wurzel{k-1}}{k}[/mm] und [mm]\limes_{k\rightarrow\infty} \bruch{\wurzel{k-2}}{k}[/mm]
> betrachtet und das sind für mich Nullfolgen,

[aufgemerkt] Diese beiden Folgen sind auch wirklich Nullfolgen, schließlich ist der Zählergrad jeweils echt kleiner als der Nennergrad!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]