matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGrenzwert der Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Grenzwert der Folge
Grenzwert der Folge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert der Folge: Idee
Status: (Frage) beantwortet Status 
Datum: 16:48 So 29.05.2005
Autor: Dhamo

Hallo Mathematiker!

Ich habe diese Aufgabe:

[mm] a_{1} [/mm] und  [mm] a_{2} [/mm] seien linear unabhängige Vektoren im RxR.Man bestimme den Grenzwert der Folge   $ [mm] \{ a_{i} | i=1,2,..... \} [/mm] $    [mm] $a_{i+2}$ [/mm] =  $ [mm] \bruch{a_{i} + a_{i+1}}{2} [/mm] $

Die Frage ist,wie man mit solche Übungen umgeht,wobei  [mm] a_{1} [/mm] und  [mm] a_{2} [/mm] vektoren sind. Kann mir jemand ein paar Tipps geben wie dieser Afgabe laufen soll.


Mfg
Dhamo

        
Bezug
Grenzwert der Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 29.05.2005
Autor: Micha

Hallo Dhamo!

> Hallo Mathematiker!
>  
> Ich habe diese Aufgabe:
>  
> [mm]a_{1}[/mm] und  [mm]a_{2}[/mm] seien linear unabhängige Vektoren im
> RxR.Man bestimme den Grenzwert der Folge   [mm]\{ a_{i} | i=1,2,..... \}[/mm]
>    [mm]a_{i+2}[/mm] =  [mm]\bruch{a_{i} + a_{i+1}}{2}[/mm]
>  
> Die Frage ist,wie man mit solche Übungen umgeht,wobei  
> [mm]a_{1}[/mm] und  [mm]a_{2}[/mm] vektoren sind. Kann mir jemand ein paar
> Tipps geben wie dieser Afgabe laufen soll.
>  

Bei solchen Grenzwerten mit Vektorfolgen betrachtet man die Konvergenz der folgen für jede Komponente. Es gilt dabei:

$ [mm] \lim_{i \to \infty} (a_i)$ [/mm] ex. [mm] $\gdw \lim_{i\to \infty} ((a_k)_i) [/mm] $ ex. [mm] $\forall [/mm] k = 1.. n$ also für jede Komponente [mm] $(a_k)$ [/mm]

Nunja und
[mm]\bruch{a_{i} + a_{i+1}}{2}[/mm] ist einfach die vektorielle Addition, die ebenfalls Komponentenweise erklärt ist.

Gruß Micha ;-)


Bezug
                
Bezug
Grenzwert der Folge: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 14:43 Di 31.05.2005
Autor: Freak84

Hi
Ich habe die gleich Aufgabe und weiß auch nicht was ich genau machen soll.
Grapfisch erkenn ich, dass eine einen bestimmten Vektor gibt dem sich genähert wird.

nur was meinst du denn mit ex. und was ist bei dir [mm] a_{k} [/mm]

vielen dank
Michael

Bezug
                        
Bezug
Grenzwert der Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 31.05.2005
Autor: bravo

Hey Matheraum,
auch ich habe die gleich Aufgabe zu bewältigen und möchte im folgendem meine Gedanken präsentieren.
[mm] a_1 [/mm] und [mm] a_2 [/mm] sollen zwei linear unabhängige Vektoren im [mm] R^2 [/mm] sein. Also habe ich für [mm] a_1 [/mm] = (1;0) und für [mm] a_2 [/mm] = (0;1) genommen. Hier ist meine erste Frage zu: Kann ich hiervon ausgehen und den Rest der linear unabhängigen Vektoren o.B.d.A annehmen? Eigentlich müsste das doch so sein (Hat das eigentlich auch etwas mit dem Intervallschachtelungsprinzip zu tun?).
Nachdem ich das gemacht hatte, habe ich einfach die nächsten Vektoren bis [mm] a_6 [/mm] berechnet. Diese sahen wie folgt aus: [mm] a_3 [/mm] = ({1 [mm] \br [/mm] 2} ; {1 [mm] \br [/mm] 2}), [mm] a_4 [/mm] = ({1 [mm] \br [/mm] 4} , {3 [mm] \br [/mm] 4}), [mm] a_5 [/mm] = ({3 [mm] \br [/mm] 8} , {5 [mm] \br [/mm] 8}) und [mm] a_6 [/mm] = ({5 [mm] \br [/mm] 16} , ({11 [mm] \br [/mm] 16}) ... .
Hiebei ist auch etwas aufgefallen, aber ich werde erstmal diese paar Zeilen posten, weil ich mir nicht sicher bin ob alles richtig angezeigt wird...(wenn alles so ist wie es aussehen soll, schreibe ich weiter)

So weit schon mal grüße von mir

Die Langeweile
ist der auf die Zeit verteilte Schmerz.
(Leonce und Lena)

Bezug
                                
Bezug
Grenzwert der Folge: Fortsetzung
Status: (Frage) für Interessierte Status 
Datum: 22:49 Di 31.05.2005
Autor: bravo

Gut so sollte es in etwa aussehen (ist erst mein zweiter Beitrag;habe noch nicht so die Übung darin).
Also aufgefallen ist mir dabei zum Einen, dass die [mm] x_1 [/mm] - Komponente addiert mit der [mm] x_2 [/mm] - Komponente immer 1 ergibt (das ist wahrscheinlich trivial und außerdem wohl auch nicht so interessant...) und zum Anderen, dass es sich hierbei um zwei Folgen handelt, mit denen man die [mm] x_1 [/mm] - Komponente und die [mm] x_2 [/mm] - Komponente bestimmt. d. h. Betrachtet man die [mm] x_1 [/mm] - und die [mm] x_2 [/mm] - Komponente getrennt, um zu beobachten gegen was für einen Punkt sie streben (das ist soweit ich es verstanden habe genau der Grenzwert), dann kommen die ersten [mm] x_1 [/mm] - Komponenten so zu stande: - 1 [mm] \br [/mm] 1 ; + 1 [mm] \br [/mm] 2 ; - 1 [mm] \br [/mm] 4 ; + 1 [mm] \br [/mm] 8 ; - 1 [mm] \br [/mm] 16 ....
und die [mm] x_2 [/mm] - Komponenten so: + 1 [mm] \br [/mm] 1 ; - 1 [mm] \br [/mm] 2 ; + 1 [mm] \br [/mm] 4 ....
Hier könnte ich etwas Hilfe gebrauchen, da mir diese Folge zwar bekannt vorkommt, aber im Moment nicht einfällt (quadratisch Folge?!).
Meine Vermutung daraus lautet: Die [mm] x_1 [/mm] - Komponente strebt gegen 1 [mm] \br [/mm] 3 und die [mm] x_2 [/mm] - Komponente strebt gegen 2 [mm] \br [/mm] 3 .
Eine Idee wie man das beweisen kann habe ich noch nicht direkt, da mir zum einen die Formel für die Entstehung der jeweils nächsten [mm] x_1,2 [/mm] - Komponenten noch nicht eingefallen ist und weil ich mich auch noch nicht so lange mit der Aufgabe beschäftigt habe. Ich könnte mir denken, dass Induktion den Beweis liefert.

So hiermit schließe ich erstmal ab und bin gespannt auf Antworten bzw. Anregungen.

Gruß Sebastian


Die Langeweile
ist der auf die Zeit verteilte Schmerz
(Leonce und Lena)

Bezug
                                        
Bezug
Grenzwert der Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 Do 02.06.2005
Autor: Julius

Hallo Sebastian!

Es tut mir sehr leid, dass dir keiner deine Frage in der von dir vorgesehenen Fälligkeit beantworten konnte. Vielleicht hast du ja beim nächsten Mal mehr Glück. [kleeblatt]

Viele Grüße
Julius

Bezug
                                
Bezug
Grenzwert der Folge: Korrektur!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:46 Mi 01.06.2005
Autor: bravo

Hey Leute, habe eben meinen post gelesen und mir ist aufgefallen, dass es nicht richtig geschrieben war. d.h. die Bruchstriche fehlen immer bei den angegebenen [mm] x_1,_2 [/mm] - Komponenten.z.B. soll es richtig heißen [mm] a_3 [/mm] =  ( [mm] \bruch{1}{2} [/mm] ; [mm] \bruch{1}{2} [/mm] ) etc.

Bezug
                        
Bezug
Grenzwert der Folge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 Do 02.06.2005
Autor: Julius

Hallo Michael!

Es tut mir sehr leid, dass dir keiner deine Frage in der von dir vorgesehenen Fälligkeit beantworten konnte. Vielleicht hast du ja beim nächsten Mal mehr Glück. [kleeblatt]

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]