matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert e^{-1/t} / sqrt(t^3)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert e^{-1/t} / sqrt(t^3)
Grenzwert e^{-1/t} / sqrt(t^3) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert e^{-1/t} / sqrt(t^3): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Do 30.09.2021
Autor: Chris84

Huhuuuu
Nach laengerer Zeit mal wieder eine Frage. Ich bin auf der Suche nach dem Grenzwert

[mm] $\lim\limit_{t\rightarrow 0} \frac{e^{-\frac{\tau}{t}}}{\sqrt{t^3}}$ [/mm] fuer [mm] $\tau>0$. [/mm]

Wenn ich mir das Ding (fuer einige positive [mm] $\tau$ [/mm] plotte, sehe ich, dass der Grenzwert gegen 0 geht. Leider ist mir noch kein analytischer Beweis gelungen und auch Mathematica gibt mir "Indeterminate".

Wenn ich den Grenzwert anschaue, bekomme ich offenkundig einen Term der Form "0/0", also dachte ich an L'Hospital. Wenn ich allerdings L'Hospital benutze, bekomme ich

[mm] $\lim\limit_{t\rightarrow 0} \frac{e^{-\frac{\tau}{t}}}{\sqrt{t^3}}=\frac{2\tau}{3} \lim\limit_{t\rightarrow 0} \frac{e^{-\frac{\tau}{t}}}{\sqrt{t^5}}$, [/mm]

d.h. der Exponent des Radikanden erhoeht sich. Wenn ich nun den Grenzwert anschaue, bekomme ich wieder "0/0", also muesste man wieder L'Hospital anwenden. Dann waechst aber wieder der Exponent des Radikanden usw. usf.

Taylorreihe habe ich ueberlegt, aber dann waere die Frage, um was ich entwickeln soll? Sowohl die Wurzel als auch die Exponentialfunktion lassen sich nicht um 0 entwickeln.

Ansonsten fiele mir noch das Argument ein, dass die Exponentialfunktion immer (ab einem bestimmten $t$) ueber Potenzen dominiert. Umgekehrt wuerde [mm] $e^{-\frac{\tau}{t}}$ [/mm] irgendwann kleiner als [mm] $\sqrt{t^3}$ [/mm] fuer kleine $t$, also etwa

[mm] $e^{-\frac{\tau}{t}} \ll \sqrt{t^3} [/mm] $
[mm] $\Leftrightarrow \frac{e^{-\frac{\tau}{t}}}{\sqrt{t^3}} \ll [/mm] 1 $,
also
[mm] $\lim\limit_{t\rightarrow 0} \frac{e^{-\frac{\tau}{t}}}{\sqrt{t^3}}$=0$, [/mm]
aber da fehlt mir noch der richtige Aufschrieb.

Irgendwelche Ideen?

Danke schonmal im Voraus,
Chris

P.S.: Ich habe diese Frage in keinem anderen Forum gestellt ;)

        
Bezug
Grenzwert e^{-1/t} / sqrt(t^3): Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 30.09.2021
Autor: Gonozal_IX

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hiho,

erstmal halten wir fest, dass der Grenzwert $\lim_{t\to 0}$ eigentlich ein $\lim_{t\searrow 0}$ ist.
D.h. die Substitution $x = \frac{1}{t}$ ist wohldefiniert und wir erhalten

$ \lim\limit_{t\rightarrow 0} \frac{e^{-\frac{\tau}{t}}}{\sqrt{t^3}} = \lim_{x\to\infty}  \sqrt{x^3} e^{-\tau x} =  \sqrt{\lim_{x\to\infty} \frac{x^3}{e^{2\tau x}}$

Kommst du jetzt alleine weiter?

Gruß,
Gono

Bezug
                
Bezug
Grenzwert e^{-1/t} / sqrt(t^3): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Do 30.09.2021
Autor: Chris84


> Hiho,
>  
> erstmal halten wir fest, dass der Grenzwert [mm]\lim_{t\to 0}[/mm]
> eigentlich ein [mm]\lim_{t\searrow 0}[/mm] ist.
> D.h. die Substitution [mm]x = \frac{1}{t}[/mm] ist wohldefiniert und
> wir erhalten
>
> [mm]\lim\limit_{t\rightarrow 0} \frac{e^{-\frac{\tau}{t}}}{\sqrt{t^3}} = \lim_{x\to\infty} \sqrt{x^3} e^{-\tau x} = \sqrt{\lim_{x\to\infty} \frac{x^3}{e^{2\tau x}}[/mm]
>  
> Kommst du jetzt alleine weiter?
>
> Gruß,
>  Gono


Super, danke, hilft sehr :)

Schoene Gruesse,
Chris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]