matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert einer Folge
Grenzwert einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Folge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:36 Do 07.12.2006
Autor: nicebear

hallo alle zusammen,
ich bin gerade hilflos. mir fehlt ein sinnvoller Ansatz für die folgende Aufgabe:

Sei [mm] (a_n) [/mm] eine konvergente Folge reeller Zahlen mit dem Grenzwert a [mm] \in \IR. [/mm] zeige, dass die Folge der arithmetischen Mittel ebenfalls gegen a konvergiert, dh.  
[mm] \limes_{n\rightarrow\infty} (a_1 [/mm] + ...+ [mm] a_n)/n [/mm] = a

kann jemand mir bitte helfen? vielen Dank schon mal.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert einer Folge: Idee
Status: (Antwort) fertig Status 
Datum: 00:29 Fr 08.12.2006
Autor: ardik

Hallo nicebear,

> Sei [mm](a_n)[/mm] eine konvergente Folge reeller Zahlen mit dem
> Grenzwert a [mm]\in \IR.[/mm] zeige, dass die Folge der
> arithmetischen Mittel ebenfalls gegen a konvergiert, dh.  
> [mm]\limes_{n\rightarrow\infty} (a_1[/mm] + ...+ [mm]a_n)/n[/mm] = a

Du könntest eine Folge [mm] $b_n=a-a_n$ [/mm] definieren, so dass Du also auch [mm] $a_n=a-b_n$ [/mm] erhältst.
Dann ist [mm] $(b_n)$ [/mm] eine Nullfolge.
Wenn Du diese letzte Form von [mm] $(a_n)$ [/mm] für das arith. Mittel verwendest, erhältst Du sowas ähnliches wie
[mm] $\frac{n*a}{n}-\frac{b_1 + ... + b_n}{n}$ [/mm]
Bleibt noch nachzuweisen, dass der zweite Bruch gegen null geht...

Vielleicht hilft das schon weiter.

Schöne Grüße
ardik

Bezug
        
Bezug
Grenzwert einer Folge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Di 12.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]