matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Grenzwert f(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Grenzwert f(x)
Grenzwert f(x) < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Do 15.01.2009
Autor: tedd

Aufgabe
Bestimmen Sie den folgenden Grenzwert:
[mm] \limes_{x\rightarrow\pi}\bruch{\sqrt{1+\cos(x)}}{x-\pi} [/mm]

Also zunächst habe ich einmal L'Hospital/Bernoulli angewandt:

[mm] \limes_{x\rightarrow\pi}\bruch{\sqrt{1+\cos(x)}}{x-\pi} [/mm]

[mm] =\limes_{x\rightarrow\pi}\bruch{-\sin(x)}{2*\sqrt{1+\cos(x)}} [/mm]

Jetzt mit [mm] \sqrt{1-\cos(x)} [/mm] erweitert:

[mm] =\limes_{x\rightarrow\pi}\bruch{-\sin(x)*\sqrt{1-\cos(x)}}{2*\sqrt{(1+\cos(x))*(1-\cos(x))}} [/mm]

[mm] =\limes_{x\rightarrow\pi}\bruch{-\sin(x)*\sqrt{1-\cos(x)}}{2*\sqrt{1-\cos^2(x)}} [/mm]

[mm] \sqrt{1-\cos^2(x)}=\pm \sin(x) [/mm] eingesetzt

[mm] =\limes_{x\rightarrow\pi}\bruch{-\sin(x)*\sqrt{1-\cos(x)}}{2*\pm \sin(x)} [/mm]

[mm] =\limes_{x\rightarrow\pi}\bruch{\mp\sqrt{1-\cos(x)}}{2} [/mm]

[mm] =\mp \bruch{\sqrt{2}}{2} [/mm]

Jetzt bin ich der Meinung, dass der Fall - irgendwie wegfallen müsste nur weis ich nicht warum und finde auch nicht raus wo bzw. sehe keine Begründung...

Was habe ich falsch gemacht?

Danke und Gruß,
tedd :-)

        
Bezug
Grenzwert f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Do 15.01.2009
Autor: Leopold_Gast

Ich habe deine Rechnung nicht überprüft, aber das Ergebnis stimmt. Insbesondere hängt das Vorzeichen davon ab, ob du dich von unten oder von oben an [mm]\pi[/mm] annäherst.
Ich würde die Rechnung anders durchführen. Man braucht nämlich nichts Weiteres als die Kenntnis von

[mm]\lim_{t \to 0} \frac{\sin t}{t} = 1[/mm]

Das dürfte aber bekannt sein. Und dann geht es mit elementaren Eigenschaften der trigonometrischen Funktionen. Mit der Substitution [mm]t = x - \pi[/mm] wird der Grenzübergang [mm]x \to \pi[/mm] auf den mit [mm]t \to 0[/mm] zurückgeführt. Und den Erweiterungstrick machen wir gleich zu Beginn:

[mm]\frac{\sqrt{1 + \cos x}}{x - \pi} = \frac{\sqrt{1 - \cos^2 x}}{\sqrt{1 - \cos x} \cdot (x - \pi)} = \frac{| \sin x|}{x - \pi} \cdot \frac{1}{\sqrt{1 - \cos x}}[/mm]

[mm]= \frac{|\sin (t + \pi)|}{t} \cdot \frac{1}{\sqrt{1 - \cos (t + \pi)}} = \frac{|\sin t|}{t} \cdot \frac{1}{\sqrt{1+ \cos t}}[/mm]

Und für [mm]x \to \pi - 0[/mm] strebt das gegen [mm]- \frac{1}{\sqrt{2}}[/mm], für [mm]x \to \pi + 0[/mm] dagegen gegen [mm]\frac{1}{\sqrt{2}}[/mm].

Bezug
                
Bezug
Grenzwert f(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Do 15.01.2009
Autor: tedd

Aye klar das ist einleuchtend!

Danke für die Hilfe Leopold_Gast :-)[ok]

Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]