matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert/ l'Hospital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwert/ l'Hospital
Grenzwert/ l'Hospital < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert/ l'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Sa 20.12.2008
Autor: Hanz

Servus,
meine Aufgabe lautet wie folgt:

Beweisen Sie:

[mm] \limes_{x\rightarrow0+}x^{n}(lnx)^{m}=0 [/mm]  (n,m [mm] \in \IN) [/mm]
-------------------------------------------------------------------------------------

[mm] x^{n}\to [/mm] 0 (für [mm] x\to0) [/mm]
[mm] (lnx)^{m}\to \pm\infty [/mm]   (für [mm] x\to0) [/mm] Hier kommt es drauf an, ob das [mm] m\in\IN [/mm] gerade oder ungerade ist.

Dann forme ich es um, damit ich l'Hospital anwenden kann:
[mm] \limes_{x\rightarrow0+}\bruch{(lnx)^{m}}{\bruch{1}{x^{n}}} [/mm]

Nun leite ich Zähler und Nenner ab:
[mm] \limes_{x\rightarrow0+}\bruch{m(lnx)^{m-1}*\bruch{1}{x}}{\bruch{-n}{x^{n+1}}} [/mm]

So, ab jetzt bin ich mir unsicher, wie man weiter vorgehen muss:
[mm] m(lnx)^{m-1} [/mm] und [mm] \bruch{1}{x} \to \infty [/mm] für [mm] x\to0 [/mm]
[mm] \bruch{-n}{x^{n+1}} \to0 [/mm] für [mm] x\to0 [/mm]

Muss ich jetzt nochmal ableiten?

        
Bezug
Grenzwert/ l'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 20.12.2008
Autor: Merle23

Im Zähler und im Nenner [mm] \frac{1}{x} [/mm] kürzen und das Ganze so lange wiederholen (also nach l'Hospital ableiten und dann kürzen), bis im Zähler kein Logarithmus mehr steht.

Bezug
                
Bezug
Grenzwert/ l'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Sa 20.12.2008
Autor: Hanz

Aber der Ausdruck mit dem lnx behält doch irgendwie immer das lnx bei, da es ja nach Kettenregel abgeleitet wird und das lnx als stehen bleibt, wenn man die äußere Ableitung bildet... oder irre ich mich da jetzt?



Und ist [mm] \bruch{1}{x} [/mm] gekürzt mit [mm] \bruch{-n}{x^{n+1}} [/mm] dann [mm] \bruch{-n}{x^{n}} [/mm] (also im Nenner dann)?

Bezug
                        
Bezug
Grenzwert/ l'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Sa 20.12.2008
Autor: Gonozal_IX


> Aber der Ausdruck mit dem lnx behält doch irgendwie immer
> das lnx bei, da es ja nach Kettenregel abgeleitet wird und
> das lnx als stehen bleibt, wenn man die äußere Ableitung
> bildet... oder irre ich mich da jetzt?

Naja, da steht in der Potenz ja erst m-1, dann m-2 ..... bis da m-m steht.
Was ist m-m? Was steht dann da?

> Und ist [mm]\bruch{1}{x}[/mm] gekürzt mit [mm]\bruch{-n}{x^{n+1}}[/mm] dann
> [mm]\bruch{-n}{x^{n}}[/mm] (also im Nenner dann)?

Jop.

MfG,
Gono.


Bezug
                                
Bezug
Grenzwert/ l'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 20.12.2008
Autor: Hanz

Also leite ich erneut ab erhalte ich (sofern ich mich net verrrechnet hab):

[mm] \limes_{x\rightarrow0+}\bruch{m*(m-1)*(lnx)^{m-2}*\bruch{1}{x}}{\bruch{n²}{x^{n+1}}} [/mm] dann wieder das [mm] \bruch{1}{x} [/mm] kürzen liefert

[mm] \limes_{x\rightarrow0+}\bruch{m*(m-1)*(lnx)^{m-2}}{\bruch{n²}{x^{n}}} [/mm]

Dann muss man es wohl m-mal ableiten bis man das bekommt:


[mm] \limes_{x\rightarrow0+}\bruch{m*(m-1)*(m-2)*(m-3)*...*(m-m)(lnx)^{m-m}}{\bruch{n^{m}}{x^{n}}} [/mm]

Dann fällt doch aber im Zähler das x genaz raus :d

Bezug
                                        
Bezug
Grenzwert/ l'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Sa 20.12.2008
Autor: rainerS

Hallo!

> Also leite ich erneut ab erhalte ich (sofern ich mich net
> verrrechnet hab):
>  
> [mm]\limes_{x\rightarrow0+}\bruch{m*(m-1)*(lnx)^{m-2}*\bruch{1}{x}}{\bruch{n²}{x^{n+1}}}[/mm]
> dann wieder das [mm]\bruch{1}{x}[/mm] kürzen liefert
>  
> [mm]\limes_{x\rightarrow0+}\bruch{m*(m-1)*(lnx)^{m-2}}{\bruch{n²}{x^{n}}}[/mm]
>  
> Dann muss man es wohl m-mal ableiten bis man das bekommt:
>  
>
> [mm]\limes_{x\rightarrow0+}\bruch{m*(m-1)*(m-2)*(m-3)*...*(m-m)(lnx)^{m-m}}{\bruch{n^{m}}{x^{n}}}[/mm]

Das stimmt nicht ganz, der Faktor (m-m) im Zähler ist zuviel. Und du hast vergessen, dass bei jeder Ableitung des Nenners ein Faktor (-1) auftritt.

> Dann fällt doch aber im Zähler das x genaz raus :d

Ja, und was kommt dann heraus?

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Grenzwert/ l'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 So 21.12.2008
Autor: Hanz

Müsste ich dann nicht folgendes erhalten:

$ [mm] \limes_{x\rightarrow0+}\bruch{m\cdot{}(m-1)\cdot{}(m-2)\cdot{}(m-3)\cdot{}...(lnx)^{m-m}}{\bruch{(-1)^{m}n^{m}}{x^{n}}} [/mm] $

= $ [mm] \limes_{x\rightarrow0+}\bruch{m!}{\bruch{(-1)^{m}n^{m}}{x^{n}}} [/mm] $

Dieser Ausdruck geht dann gegen 0 für [mm] x\to0, [/mm] oder?

Bezug
                                                        
Bezug
Grenzwert/ l'Hospital: richtig
Status: (Antwort) fertig Status 
Datum: 10:30 So 21.12.2008
Autor: Loddar

Hallo Hanz!


[ok] Richtig.


Gruß
Loddar


Bezug
                                                                
Bezug
Grenzwert/ l'Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:40 So 21.12.2008
Autor: Hanz

Danke!

Frohen 4. Advent an alle netten Helfer :)

Bezug
        
Bezug
Grenzwert/ l'Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Sa 20.12.2008
Autor: rainerS

Hallo!


>  [mm]m(lnx)^{m-1}[/mm] und [mm]\bruch{1}{x} \to \infty[/mm] für [mm]x\to0[/mm]
>  [mm]\bruch{-n}{x^{n+1}} \to0[/mm] für [mm]x\to0[/mm]

Du meinst [mm]\bruch{-n}{x^{n+1}}\to\pm\infty [/mm] für [mm]x\to0[/mm]

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]