matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwert mehrerer Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Grenzwert mehrerer Variablen
Grenzwert mehrerer Variablen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert mehrerer Variablen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:02 So 22.05.2005
Autor: TobiasBe

Ich habe diese Frage in keinem anderen Internetforum gestellt.

Ich beweise gerade, ob es Grenzwerte für Funktionen mit zwei Variablen gibt, die wie folgt definiert sind:

[mm]f: \{(x, y) \in \IR^{2}: x>0, y>0\} \to \IR [/mm]

und der Grenzwert für (x,y) [mm] \to [/mm] (0,0) ist.

Ich weiss nun, dass der Grenzwert existiert wenn die Werte von f(x,y) gegen einen bestimmten Wert A  streben, egal auf welchem Wege dies erfolgt.
Nun habe ich als simples Beispiel mal diese Funktion:

[mm]f(x, y) = \bruch{x}{y}sinx [/mm]

Ich wähle mir hier nun die Folgen für die x=ay, mit a fest und aus [mm] \IR. [/mm]
Setzte ich das ein, habe ich die Formel

a*sin(ay)

Wenn ich hier (x,y) gegen (0,0) laufen lasse, läuft der Wert in der Klammer gegen Null, somit der Sinus ebenfalls und somit ist a mal der sinus ebenfalls Null.

Also behaupt ich, dass der Grenzwert A=0 ist.

Meine Frage: Ist dies ein vollständiger Beweis dafür?
Kann ich daraus wirklich folgern, dass das für alle Folgen gilt?
Gibt es eine andere (bessere) Möglichkeit den Beweis durchzuführen?

        
Bezug
Grenzwert mehrerer Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:53 Mo 23.05.2005
Autor: holy_diver_80

Probiere es mal mit [mm] x_n [/mm] = 1/n und [mm] y_n [/mm] = [mm] 1/n^2 [/mm] und berechne lim [mm] f(x_n,y_n) [/mm]

Bezug
        
Bezug
Grenzwert mehrerer Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Di 24.05.2005
Autor: banachella

Hallo!

Grundsätzlich reicht es nicht, nur eine Folge zu betrachten. Diese kannst du dir dann ja gerade so definieren, dass es klappt.
Wie holy_diver schon bemerkt hatte, geht es mit den Folgen [mm] $x_n=\bruch{1}{n}$ [/mm] und [mm] $y_n=\bruch{1}{n^2}$ [/mm] auch prompt schief, weil die Folge [mm] $n\sin\left(\bruch{1}{n}\right)$ [/mm] gar nicht konvergiert. Das ist allerdings kein besonders gutes Beispiel, weil diese Folge nicht besonders leicht zu untersuchen ist. Aber zum Beispiel die Folge [mm] $x_n=\bruch{1}{n}$, $y_n=\bruch{\sin(n)}{n^2}$ [/mm] ergibt [mm] $f(x_n;y_n)=n\to\infty$... [/mm]
Um bei einer Funktion nachzuweisen, dass sie für [mm] $(x,y)\to [/mm] (0,0)$ gegen $(0,0)$ konvergiert, müsstest du dir also ganz allgemein eine Folge wählen mit [mm] $\|(x_n,y_n)\|\to [/mm] 0$.

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]