matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert mit Potenzreihenentw
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Grenzwert mit Potenzreihenentw
Grenzwert mit Potenzreihenentw < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert mit Potenzreihenentw: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 So 11.07.2010
Autor: mich1985

Aufgabe

[mm] \limes_{x\rightarrow0} \frac{x+2*sinh(2x)}{exp(x)*sinh(x)} [/mm]

Hallo zusammen,
ich soll den Grenzwert von oben angeben. Eine Möglichkeit hierzu ist ja über die Potenzreihentwicklung:

[mm] \frac{x+2*sinh(2x)}{exp(x)*sinh(x)} [/mm] = [mm] \frac{x+2*(2x+\frac{8x^{3}}{3!}+\frac{25x^{5}}{5!}+...)}{(1+x+\frac{x^{2}}{2!}+...)*(x+\frac{x^3}{3!}+\frac{x^5}{5!}+...)} [/mm]

Leider komme ich von hier aus nicht weiter, da ich ja nicht wirklich etwas weg kürzen kann. Hat zufällig jemand einen Tipp für mich?

Gruß

        
Bezug
Grenzwert mit Potenzreihenentw: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 So 11.07.2010
Autor: Marcel

Hallo,

>
> [mm]\limes_{x\rightarrow0} \frac{x+2*sinh(2x)}{exp(x)*sinh(x)}[/mm]
>  
> Hallo zusammen,
>  ich soll den Grenzwert von oben angeben. Eine Möglichkeit
> hierzu ist ja über die Potenzreihentwicklung:
>  
> [mm]\frac{x+2*sinh(2x)}{exp(x)*sinh(x)}[/mm] =
> [mm]\frac{x+2*(2x+\frac{8x^{3}}{3!}+\frac{\red{25}x^{5}}{5!}+...)}{(1+x+\frac{x^{2}}{2!}+...)*(x+\frac{x^3}{3!}+\frac{x^5}{5!}+...)}[/mm]

wie kommst Du da zu [mm] $\red{25}$? [/mm] Es ist [mm] $(2x)^5=2^5x^5=32x^5\,.$ [/mm]

Wenn man bei sowas nicht weiter weiß, so hilft notfalls sicher de l'Hopital oder notfalls auch das Cauchyprodukt im Nenner vll. weiter. Aber hier geht es auch so noch relativ harmlos, denn:

Hier kann man auch so vorgehen (geht natürlich auch vollkommen analog bei Deinen Reihendarstellungen):
[mm] $$\frac{x+2*sinh(2x)}{exp(x)*sinh(x)}=\frac{1+4*\frac{\sinh(2x)}{2x}}{\exp(x)*\frac{\sinh(x)}{x}}\,.$$ [/mm]

Denn [mm] $\sinh(x)/x=1+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+...$ [/mm] kann man mit [mm] $\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+... [/mm] = [mm] \mathcal{O}(x^2) \cap \hboxl{o}(x)$ [/mm] ($x [mm] \to [/mm] 0$) (vgl. auch nochmal []die Definition der Landau-Symbole) abschätzen.

Es ergibt sich
[mm] $$\sinh(x)/x \to 1\;\;(x \to [/mm] 0)$$
und damit auch
[mm] $$\sinh(2x)/(2x) \to 1\;\;(x \to 0)\,.$$ [/mm]

Dein gesuchter Grenzwert sollte sich dann zu
[mm] $$(1+4)/(1*1)=5\,$$ [/mm]
ergeben.

Beste Grüße,
Marcel

Bezug
                
Bezug
Grenzwert mit Potenzreihenentw: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 So 11.07.2010
Autor: mich1985

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]