matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesGrenzwert von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Grenzwert von Folgen
Grenzwert von Folgen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Di 22.12.2009
Autor: Schobbi

Aufgabe
Bestimmen Sie den Grenzwert der Folge und geben Sie den Rechenweg kurz an.  [mm] a_{n}=\bruch{n^2-1}{n+2} [/mm]

Guten Morgen zusammen! Vielleicht könnt ihr mir bei obiger Aufgabe helfen, bzw. mir verraten ob mein Rechnenweg bzw. meine Schlussfolgerung so okay ist.

[mm] a_{n}=\bruch{n^2-1}{n+2}=\bruch{1-\bruch{1}{n^2}}{\bruch{1}{n}+\bruch{2}{n^2}} [/mm]

[mm] \limes_{n\rightarrow\infty}a_{n}=\bruch{\limes (1-\bruch{1}{n^2})}{\lim(\bruch{1}{n}+\bruch{2}{n^2})} [/mm]

Nun zu meiner eigentlichen Frage: Kann ich jetzt wie folgt argumentieren?
Da der Grenzwert des Nenners = 0 ist (und die Division in [mm] \IR [/mm] nicht definiert ist) hat diese Folge keinen Grenzwert??

Danke und Frohe Weihnachten
Schobbi

        
Bezug
Grenzwert von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Di 22.12.2009
Autor: fred97


> Bestimmen Sie den Grenzwert der Folge und geben Sie den
> Rechenweg kurz an.  [mm]a_{n}=\bruch{n^2-1}{n+2}[/mm]
>  Guten Morgen zusammen! Vielleicht könnt ihr mir bei
> obiger Aufgabe helfen, bzw. mir verraten ob mein Rechnenweg
> bzw. meine Schlussfolgerung so okay ist.
>  
> [mm]a_{n}=\bruch{n^2-1}{n+2}=\bruch{1-\bruch{1}{n^2}}{\bruch{1}{n}+\bruch{2}{n^2}}[/mm]
>  
> [mm]\limes_{n\rightarrow\infty}a_{n}=\bruch{\limes (1-\bruch{1}{n^2})}{\lim(\bruch{1}{n}+\bruch{2}{n^2})}[/mm]


Diese Gleichung kannst Du nur hinschreiben, wenn [mm] (a_n) [/mm] einen Grenzwert hat !



>  
> Nun zu meiner eigentlichen Frage: Kann ich jetzt wie folgt
> argumentieren?
>  Da der Grenzwert des Nenners = 0 ist (und die Division in
> [mm]\IR[/mm] nicht definiert ist) hat diese Folge keinen
> Grenzwert??

Die Idee ist richtig. Argumentiere so:

Für n [mm] \ge [/mm] 2 ist

            [mm] $a_n \ge \bruch{n^2-4}{n+2}= [/mm] n-2$

[mm] (a_n [/mm] ) ist also unbeschränkt und somit nicht konvergent

Allerdings: [mm] $a_n \to \infty$ [/mm] für $n [mm] \to \infty$ [/mm]

FRED


>  
> Danke und Frohe Weihnachten
>  Schobbi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]