matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGrenzwert von zwei Seiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Grenzwert von zwei Seiten
Grenzwert von zwei Seiten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von zwei Seiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Sa 12.07.2014
Autor: alfonso2020

Hallo,

ich habe folgende Funktion gegeben [mm] f(x)=\bruch{9-x^{2}}{x^{2}-2x-3} [/mm] und habe diese nach Ermittlung des Definitionsbereiches zu [mm] f(x)=-1-\bruch{2}{x+1} [/mm] umgeformt.

Mein Defintionsbereich ist somit :

[mm] D_{f}=(-\infty,-1) \cup [/mm] (-1,3) [mm] \cup (3,\infty) [/mm]

Nun will ich den Grenzwert für a [mm] \in [/mm] R [mm] \cup \D_{f} [/mm] = [mm] \{-\infty,\infty,-1,3\} [/mm]

Nun muss ich die Grenzwerte bestimmen. Dies mache ich für

[mm] \limes_{n\rightarrow\infty} [/mm] f(x)=-1

[mm] \limes_{n\rightarrow\-infty} [/mm] f(x)=-1

[mm] \limes_{n\rightarrow\3} f(x)=-\bruch{3}{2} [/mm]

Nun muss ich noch den Grenzwert für -1 von links und einmal von rechts betrachten. Weshalb ist das so?

Wieso muss ich dies nicht für die 3 ebenfalls machen? Ich hoffe ihr könnt es mir verständlich erklären, damit ich solche Aufgabentypen bewältigen kann.

Danke im Voraus.

        
Bezug
Grenzwert von zwei Seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Sa 12.07.2014
Autor: Valerie20


> Hallo,

>

> ich habe folgende Funktion gegeben
> [mm]f(x)=\bruch{9-x^{2}}{x^{2}-2x-3}[/mm] und habe diese nach
> Ermittlung des Definitionsbereiches zu
> [mm]f(x)=-1-\bruch{2}{x+1}[/mm] umgeformt.

[notok]

> Mein Defintionsbereich ist somit :

>

> [mm]D_{f}=(-\infty,-1) \cup[/mm] (-1,3) [mm]\cup (3,\infty)[/mm]

[notok]


Widmen wir uns zunächst mal der Frage nach dem Definitionsbereich:

Was du jetzt tust ist folgendens:

1. Du schaust dir den Zähler deiner Funktion an und erkennst durch eine geschickte Umformung die dritte binomische Formel (Tipp: [mm] $9=3^2$).  [/mm]

2. Du berechnest dir die Nullstellen des Nenners und faktorisierst diesen danach. Als Beispiel: Wenn du die Nullstellen zu $3$ und $-1$ berechnest, kannst du das schreiben als [mm] $(x-3)\cdot(x+1)$. [/mm] Dein Definitionsbereich ist nun gleichzeitig der Zahlenraum [mm] $\IR$ [/mm] ohne diese beiden Nullstellen. Warum?: Weil der Nenner numal nicht "0" werden darf.

3. Du schreibst deine Funktion mit den neu gewonnenen Erkenntnissen um und vereinfachst diese. 

4. Du schreibst deine Ergebnisse hier her und wir schauen ob es noch hakt und wo du Hilfe benötigst.

Valerie

Bezug
                
Bezug
Grenzwert von zwei Seiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 12.07.2014
Autor: alfonso2020

Den Definitionsbereich sollte ich vorher angeben, bevor ich umforme.

Ich denke, dass ich jetzt weiß, weshalb ich den limes von links und rechts von -1 bilden muss. Das hängt so wie ich jetzt gesehen habe damit zusammen, dass 3 eine hebbare Lücke und -1 eine Polstelle ist. Stimmts ?

Bezug
                        
Bezug
Grenzwert von zwei Seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Sa 12.07.2014
Autor: rmix22


> Den Definitionsbereich sollte ich vorher angeben, bevor ich
> umforme.

Ja. Deine Umformung war ja korrekt und auch der Definitionsbereich als Vereinigung von drei beidseitig offenen Intervallen ist nicht falsch, aber ich denke, dass die Schreibweise mittels Mengendifferenz
[mm] $D_f=\IR\backslash\{-1; 3\}$ [/mm]
einfacher und für viele Zwecke übersichtlicher wäre.

  

> Ich denke, dass ich jetzt weiß, weshalb ich den limes von
> links und rechts von -1 bilden muss. Das hängt so wie ich
> jetzt gesehen habe damit zusammen, dass 3 eine hebbare
> Lücke und -1 eine Polstelle ist. Stimmts ?  

Ja, das ist richtig. Allerdings fehlt noch die Begründung, warum du an der Stelle 3 eine hebbare Unstetigkeitsstelle hast. Eine pragmatische Möglichkeit ist, immer den rechts- und linksseitigen Grenzwert zu bilden - stimmen diese überein und sind in der Zielmenge enthalten, dann handelt es sich um eine hebbare Unstetigkeit. Natürlich kannst du auch mit dem kürzbaren Ausdruck $(x-3)$ argumentieren, doch dann müsstest du korrekterweise auch noch prüfen, ob zB 3 nicht eine mehrfache Nullstelle des Nenners ist, ob also nicht auch noch nach dem Kürzen durch $(x-3)$  der Term $(x-3)$ weiterhin abspaltbar ist.
Ist die Stelle nach dem Kürzen keine Unstetigkeitsstelle mehr, ist sie hebbar.

Gruß RMix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]