matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwertberechnung
Grenzwertberechnung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:52 Fr 22.02.2013
Autor: Dajohre

Aufgabe
Grenzwert berechnen

[mm] \limes_{n\rightarrow\infty}(\wurzel{n^2+9n+4}-n) [/mm]

Ich löste die Aufgabe wie folgt:

[mm] n(\wurzel{1+9/n+4/n^2})-n [/mm]
= n [mm] (\wurzel{1+9/n+4/n^2})- [/mm] 1)
n [mm] \to \infty [/mm] = [mm] \infty*(1-1)= [/mm] 0



Dieser Rechenweg ist natürlich falsch, ich habe es auch danach einmal neu
mit anderem Ansatz gerechnet und das richtige rausbekommen (9/2)

Meine Frage wäre wo mein Fehler steckt.
Ich finde ihn nicht und würde das in zukunft gern vermeiden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Fr 22.02.2013
Autor: Diophant

Hallo und

[willkommenvh]

> Grenzwert berechnen
>
> [mm]\limes_{n\rightarrow\infty}(\wurzel{n^2+9n+4}-n)[/mm]
> Ich löste die Aufgabe wie folgt:
>
> [mm]n(\wurzel{1+9/n+4/n^2})-n[/mm]
> = n [mm](\wurzel{1+9/n+4/n^2})-[/mm] 1)
> n [mm]\to \infty[/mm] = [mm]\infty*(1-1)=[/mm] 0

Das ist der Fehler! Unendlich ist keine reelle Zahl, und insbesondere ist die Menge [mm] \IR\cup\{-\infty;\infty\}, [/mm] die man da oft in der Analaysis so stillschweigend voraussetzt, kein Körper. Das bedeutet, du darfst das Unendlich-Symbol nicht ausklammern.

Es gibt in der Analysis eine Reihe von Ausdrücken, die man als nicht definiert bezeichnet, weil man Ihnen eben per definition keinen Wert zuweisen kann, jedenfalls nicht so, dass es irgendeinen Sinn ergeben würde.

Hierzu gehört der Ausdruck

[mm] \infty-\infty [/mm]

und genau der liegt hier vor. Die Aufgabe ist vom Typ her ein absoluter Klassiker. Du kennst die 3. binomische Formel

[mm] a^2-b^2=(a-b)*(a+b) [/mm] ?

Erweitere deinen Term so, dass ein Bruch entsteht, dessen Term ein 3. Binom ist. Dann kannst du den Grenzwert durch eine naheliegende Vereinfachung bestimmen.


Gruß, Diophant

Bezug
                
Bezug
Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Fr 22.02.2013
Autor: Sax

Hi,

> Die Aufgabe ist vom Typ er ein absoluter Klassiker.

Der Fehler auch.

Gruß Sax

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]