matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:13 Mo 13.03.2006
Autor: BasketCase

Aufgabe
  [mm] \limes_{n\rightarrow\infty} [/mm] ( [mm] \bruch{n^3-1}{ \vektor{n \\ 3}}+ (\bruch{1}{n+1}- \bruch{1}{1-n})) [/mm]

Hallo zusammmen!

Ich bin schon länger hier am lesen, aber habe es jetzt erst geschafft mich endlich mal anzumelden.  :)

Vielleicht kann mir ja jemand bei der Aufgabe helfen.
Mein Problem ist, dass ich nicht weiß wie ich den Grenzwert davon berechnen soll.
Probiert habe ich es bereits mit der Methode von L'Hospital (Ableitung durch Ableitung) und natürlich auch alles durch die größte Potenz zu teilen.  Mit beiden Methoden kam ich jedoch nicht weiter, da ich nicht wusste was ich mit dem Binomialkoeffizienten  [mm] \vektor{n \\ 3} [/mm] anfangen soll, bzw. wie dieser sich gegenüber der Potenz verhält. Umgeformt hatte ich ihn natürlich auch schon in  [mm] \bruch{n!}{3!-(n-3)!}, [/mm] aber auch das brachte mich nicht wirklich weiter :-(

Wäre über jeden Tip dankbar!

Schönen Gruß,
BasketCase

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertbestimmung: Umformungen
Status: (Antwort) fertig Status 
Datum: 00:29 Mo 13.03.2006
Autor: Loddar

Hallo BasketCase,

[willkommenmr] !!


Schreibe folgende Terme des ersten Bruches um:

[mm] $n^3-1 [/mm] \ = \ [mm] (n-1)*\left(n^2+n+1\right)$ [/mm]

[mm] $\vektor{n\\3} [/mm] \ = \ [mm] \bruch{n*(n-1)*(n-2)}{1*2*3} [/mm] \ = \ [mm] \bruch{n*(n-1)*(n-2)}{6}$ [/mm]


Anschließend alle drei Brüche auf einem Bruchstrich zusammenfassen ...


Gruß
Loddar


Bezug
                
Bezug
Grenzwertbestimmung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:04 Mo 13.03.2006
Autor: BasketCase

Wow, das ging aber schnell!  Vielen Dank für die so schnelle Antwort (und das auch noch zu so einer Uhrzeit)!
Ich hatte mir lange den Kopf darüber zerbrochen, aber auf diese Umformung war ich nicht gekommen. *hand gegen die Stirn Schlag* ;-)

Thanks!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]