matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:14 Sa 03.12.2011
Autor: Jule2

Aufgabe
Berechnen Sie den Grenzwert der konvergenten Reihe:

[mm] \summe_{k=2}^{\infty} \bruch{1}{4k^2 -1} [/mm]

Hallo liebe Leser,
wäre nett wenn mir einer sagen würde ob die schreibweise so ok ist oder nicht bin mir da nich ganz sicher:
Also ich habe die Summe
[mm] \summe_{k=2}^{\infty} \bruch{1}{4k^2 -1} [/mm]
mittels Partialbruchzerlegung umgeschrieben in
[mm] \bruch{1}{4}(\summe_{k=2}^{\infty} \bruch{1}{k-\bruch{1}{2}} -\summe_{k=2}^{\infty} \bruch{1}{ k +\bruch{1}{2}}) [/mm]

Die beiden Summen sehen ja wie folgt aus:
[mm] \summe_{k=2}^{\infty} \bruch{1}{k-\bruch{1}{2}} =\bruch{2}{3}+\bruch{2}{5}+\bruch{2}{7}+......+\bruch{2}{2k-1} [/mm]
[mm] \summe_{k=2}^{\infty} \bruch{1}{k+\bruch{1}{2}} =\bruch{2}{5}+\bruch{2}{7}+\bruch{2}{9}+......+\bruch{2}{2k-1}+\bruch{2}{2k+1} [/mm]
So nun nun kann ich dass ja auch umordnen
[mm] \summe_{k=2}^{\infty} \bruch{1}{k-\bruch{1}{2}} -\summe_{k=2}^{\infty} \bruch{1}{ k +\bruch{1}{2}} =\bruch{2}{3}+\bruch{2}{5}-\bruch{2}{5}+\bruch{2}{7}-\bruch{2}{7}+.......+\bruch{2}{2k-1}-\bruch{2}{2(k-1)+1}-\bruch{2}{2k+1} [/mm]
Also bleibt übrig:
[mm] \bruch{2}{3}-\bruch{2}{2k+1} [/mm]

So und jetzt den Limes anwenden dann steht da:

[mm] \limes_{k\rightarrow\infty}= \bruch{1}{4}*(\bruch{2}{3}-\bruch{2}{2k+1}) [/mm]
[mm] =\limes_{k\rightarrow\infty}\bruch{1}{4}*\bruch{2}{3} -\limes_{k\rightarrow\infty}\bruch{1}{4}*\bruch{2}{2k+1} [/mm]
[mm] =\bruch{1}{4}*\bruch{2}{3}-(\bruch{1}{4}*0) [/mm]
[mm] =\bruch{1}{6} [/mm]




        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 03.12.2011
Autor: Diophant

Hallo,

ich bin, um ehrlich zu sein, deine Rechnung nicht ganz durchgegangen, sondern habe den Grenzwert selbst kurz 'mit der Hand am Arm' berechnet. Es ist ja eine Teleskopsumme, was du ja auch benutzt hast. Kurzer Rede langer Sinn: ich komme mit einer etwas anderen Partialbruchzuerlegung auf das gleiche Resultat.

Ich denke, deine Rechnung ist richtig, sie hat aber noch etwas Potenzial in Sachen Vereinfachung. :-)

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]