matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisGrenzwerte von Distributionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Grenzwerte von Distributionen
Grenzwerte von Distributionen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte von Distributionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:42 Di 30.01.2007
Autor: k3nny

Aufgabe
Definiere für jedes a aus [mm] \IR, [/mm] a [mm] \not= [/mm] 0, die Distributionen ua, va, wa aus [mm] S'(\IR) [/mm] wie folgt:

(ua, [mm] \alpha) [/mm] := [mm] \integral_{-\infty}^{\infty}{sin(a*x)*\alpha(x) dx} [/mm]

(va, [mm] \alpha) [/mm] := [mm] \integral_{a-1}^{a+1}{\alpha(x) dx} [/mm]

(wa, [mm] \alpha):= a*(\alpha(-\bruch{1}{2a})-\alpha(\bruch{1}{2a})) [/mm]

Zeige

1. [mm] \limes_{a\rightarrow\infty} [/mm] ua = 0 aus [mm] S'(\IR) [/mm]

2. [mm] \limes_{a\rightarrow\infty} [/mm] va = 0 aus [mm] S'(\IR) [/mm]

3. [mm] \limes_{a\rightarrow\infty} [/mm] wa = [mm] \delta_{0}' [/mm] aus [mm] S'(\IR) [/mm]

Hi zusammen

ich hab mal wieder ein paar Fragen zu der Aufgabe oben!

Meine Lösung zur 1. lautet wie folgt

Mit [mm] [/mm] = - [mm] [/mm] folgt

[mm] \integral_{-\infty}^{\infty}{sin(a*x)*\alpha(x)dx} [/mm] = - [mm] \integral_{-\infty}^{\infty}{-\bruch{1}{a}*cos(a*x)*\alpha(x)'dx} [/mm]

[mm] \bruch{1}{a} [/mm] ist konstant und kann vor das Integral gezogen werden, so dass wenn a ggn Unendlich läuft [mm] \bruch{1}{a} [/mm] = 0 wird und somit [mm] \limes_{a\rightarrow\infty} [/mm] ua = 0 aus [mm] S'(\IR) [/mm] bewiesen wäre... Stimmt das so?

Meine Idee zu 2. lautet wie folge

[mm] \integral_{a-1}^{a+1}{\alpha(x) dx} [/mm] hat für [mm] \limes_{a\rightarrow\infty} [/mm] die selben Integralgrenzen und ist somit = 0 womit es schon bewiesen ist, das [mm] \limes_{a\rightarrow\infty} [/mm] va = 0 aus [mm] S'(\IR) [/mm]

Naja und zur 3 fällt mir irgendwie nur wenig ein ausser, dass man den Term  [mm] a*(\alpha(-\bruch{1}{2a})-\alpha(\bruch{1}{2a})) [/mm] noch irgendwie umschreiben muss, so dass leichter ersichtlich ist, dass sich bei  [mm] a*(\alpha(-\bruch{1}{2a})-\alpha(\bruch{1}{2a})) [/mm] für [mm] \limes_{a\rightarrow\infty} [/mm] die Ableitung der Delta Distribution ergibt. Alternativ könnte man den Ausdruck ja schreiben als [mm] a*\integral_{(1/2a}^{-1/2a}{\alpha(x)' dx} [/mm] oder? Nur wie bekomm ich jetzt die Beziehung zur Delta Distribution bzw deren Ableitung?

Wäre sehr nett wenn da mal wer drübergucken könnte und mir ein paar Tips gibt bzw mich in Richtung Lösung schubst ;) Danke im Vorraus schonmal

k3nny

        
Bezug
Grenzwerte von Distributionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 So 04.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]