matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertsätze für Potenzen ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwertsätze für Potenzen ?
Grenzwertsätze für Potenzen ? < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertsätze für Potenzen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Di 22.09.2009
Autor: abakus

Hallo,
es gibt die bekannten Sätze für die Grenzwerte einer Summe, eines Produkts bzw. eines Quotienten von zwei Zahlenfolgen.
Ich bin der Ansicht, dass außerdem noch gilt:
[mm] (\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b) [/mm]
und auch
[mm] (\limes_{n\rightarrow\infty}a_n)^n =\limes_{n\rightarrow\infty}(a_n^n). [/mm]
Ist das soweit korrekt oder gibt es "böse" Gegenbeispiele?
Gruß Abakus


        
Bezug
Grenzwertsätze für Potenzen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Di 22.09.2009
Autor: fred97


> Hallo,
>  es gibt die bekannten Sätze für die Grenzwerte einer
> Summe, eines Produkts bzw. eines Quotienten von zwei
> Zahlenfolgen.
>  Ich bin der Ansicht, dass außerdem noch gilt:
>  [mm](\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b)[/mm]


Das ist richtig, es ist ein Spezialfall für Grenzwerte eines Produktes (natürlich unter der Vor. , dass [mm] (a_n) [/mm] konvergent ist und b nicht von n abhängt).


>  
> und auch
> [mm](\limes_{n\rightarrow\infty}a_n)^n =\limes_{n\rightarrow\infty}(a_n^n).[/mm]


Das ist im allg. falsch !

beispiel: [mm] a_n [/mm] = [mm] 1+\bruch{1}{n} [/mm]

Dann ist [mm] \limes_{n\rightarrow\infty}a_n [/mm] = 1,

also ( [mm] \limes_{n\rightarrow\infty}a_n )^n [/mm] = 1,

aber [mm] $\limes_{n\rightarrow\infty}a_n^n [/mm] = e$


FRED




>  
> Ist das soweit korrekt oder gibt es "böse"
> Gegenbeispiele?
>  Gruß Abakus
>  


Bezug
                
Bezug
Grenzwertsätze für Potenzen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:19 So 30.07.2017
Autor: X3nion


> > Hallo,
>  >  es gibt die bekannten Sätze für die Grenzwerte einer
> > Summe, eines Produkts bzw. eines Quotienten von zwei
> > Zahlenfolgen.
>  >  Ich bin der Ansicht, dass außerdem noch gilt:
>  >  [mm](\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b)[/mm]
>  
>
> Das ist richtig, es ist ein Spezialfall für Grenzwerte
> eines Produktes (natürlich unter der Vor. , dass [mm](a_n)[/mm]
> konvergent ist und b nicht von n abhängt).


Hallo zusammen!

Durch Zufall bin ich auf diesen Thread gestoßen und ich hoffe es ist in Ordnung, wenn ich ihn wieder zum Leben erwecke, denn ich wollte nicht etwas posten, was bereits existiert.

Nahezu 8 Jahre ist es her, seitdem die Frage von abakus im Forum gestellt wurde, ob [mm] (\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b) [/mm] gilt. Fred antwortete damals, dass diese Gleichheit ein Spezialfall der Produktregel für Grenzwertsätze ist und gilt, vorausgesetzt, dass b nicht abhängig ist von n. (Gegenbeispiel für ein von n unabhängiges b war [mm] a_{n} [/mm] = 1 + [mm] \frac{1}{n} [/mm] und b = n)

Meine Frage nun: Wie lässt sich der Sachverhalt beweisen?
Ich habe es mit der Produktregel probiert, komme da aber nicht wirklich ans Ziel.

Die Produktregel lautet ja: Sind [mm] (a_{n}), (b_{n}) [/mm] zwei konvergente Folgen reeller Zahlen. Dann konvergiert auch die Produktfolge [mm] (a_{n}b_{n})_{n\in\IN} [/mm] und es gilt

[mm] \lim_{n\rightarrow\infty} (a_{n} b_{n}) [/mm] = [mm] (\lim_{n\rightarrow\infty} a_{n}) \cdot{} (\lim_{n\rightarrow\infty} a_{n}) [/mm]

Ist nun [mm] a_{n} [/mm] konvergent, so sicherlich auch [mm] a_{n}^{b} [/mm] bei festem b.

Setze [mm] b_{n} [/mm] := [mm] a_{n}^{b-1} [/mm]

Es folgt: [mm] \lim_{n\rightarrow\infty} (a_{n} a_{n}^{b-1}) [/mm] = [mm] \lim_{n\rightarrow\infty} (a_{n}^{b}) [/mm] = [mm] (\lim_{n\rightarrow\infty} a_{n}) \cdot{} (\lim_{n\rightarrow\infty} a_{n}^{b-1}) [/mm]

Nun weiß ich aber nicht, wie ich dadurch auf [mm] (\lim_{n\rightarrow\infty} a_{n})^{b} [/mm] kommen soll.
Funktioniert es überhaupt so, oder gibt es andere zielführende Ansätze?


Würde mich über Antworten freuen!

Viele Grüße,
X3nion

Bezug
                        
Bezug
Grenzwertsätze für Potenzen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 So 30.07.2017
Autor: Diophant

Hallo Xenion,

> Hallo zusammen!

>

> Durch Zufall bin ich auf diesen Thread gestoßen und ich
> hoffe es ist in Ordnung, wenn ich ihn wieder zum Leben
> erwecke, denn ich wollte nicht etwas posten, was bereits
> existiert.

>

> Nahezu 8 Jahre ist es her, seitdem die Frage von abakus im
> Forum gestellt wurde, ob [mm](\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b)[/mm]
> gilt. Fred antwortete damals, dass diese Gleichheit ein
> Spezialfall der Produktregel für Grenzwertsätze ist und
> gilt, vorausgesetzt, dass b nicht abhängig ist von n.
> (Gegenbeispiel für ein von n unabhängiges b war [mm]a_{n}[/mm] = 1
> + [mm]\frac{1}{n}[/mm] und b = n)

>

> Meine Frage nun: Wie lässt sich der Sachverhalt beweisen?
> Ich habe es mit der Produktregel probiert, komme da aber
> nicht wirklich ans Ziel.

>

> Die Produktregel lautet ja: Sind [mm](a_{n}), (b_{n})[/mm] zwei
> konvergente Folgen reeller Zahlen. Dann konvergiert auch
> die Produktfolge [mm](a_{n}b_{n})_{n\in\IN}[/mm] und es gilt

>

> [mm]\lim_{n\rightarrow\infty} (a_{n} b_{n})[/mm] =
> [mm](\lim_{n\rightarrow\infty} a_{n}) \cdot{} (\lim_{n\rightarrow\infty} a_{n})[/mm]

>

> Ist nun [mm]a_{n}[/mm] konvergent, so sicherlich auch [mm]a_{n}^{b}[/mm] bei
> festem b.

>

> Setze [mm]b_{n}[/mm] := [mm]a_{n}^{b-1}[/mm]

>

> Es folgt: [mm]\lim_{n\rightarrow\infty} (a_{n} a_{n}^{b-1})[/mm] =
> [mm]\lim_{n\rightarrow\infty} (a_{n}^{b})[/mm] =
> [mm](\lim_{n\rightarrow\infty} a_{n}) \cdot{} (\lim_{n\rightarrow\infty} a_{n}^{b-1})[/mm]

>

> Nun weiß ich aber nicht, wie ich dadurch auf
> [mm](\lim_{n\rightarrow\infty} a_{n})^{b}[/mm] kommen soll.

Ganz einfach: indem du dieses Verfahren insgesamt (b-1)-mal anwendest. Und damit ist auch klar, dass das so nur für natürliche Exponenten gilt.

> Funktioniert es überhaupt so, oder gibt es andere
> zielführende Ansätze?

Ich würde sagen, dass das ganze sofort aus der Stetigkeit der Exponentialfunktion folgt.


Gruß, Diophant

Bezug
                                
Bezug
Grenzwertsätze für Potenzen ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:06 Di 01.08.2017
Autor: X3nion

Hallo Diophant und Danke für deine Antwort!

> Ich würde sagen, dass das ganze sofort aus der Stetigkeit der
> Exponentialfunktion folgt.

Ah stimmt, daran habe ich nicht gedacht! Aber du meinst bestimmt nicht die Exponentialfunktion, sondern die allgemeine Potenzfunktion

p: (0, [mm] \infty) \mapsto \IR, [/mm] x [mm] \rightarrow x^{\alpha} [/mm] mit [mm] \alpha \in \IR [/mm] ?

Mich hat es halt gewundert, da Fred damals geschrieben hat, dass dieser Fall ein Spezialfall für den Grenzwertsatz für Produkte ist.

Dann müsste man erst einmal beweisen, dass die allgemeine Potenzfunktion überall auf ihrem Definitionsbereich stetig ist. Hat da jemand eine Idee, wie man dies machen könnte?


Viele Grüße,
X3nion

Bezug
                                        
Bezug
Grenzwertsätze für Potenzen ?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Di 01.08.2017
Autor: fred97


> Hallo Diophant und Danke für deine Antwort!
>  
> > Ich würde sagen, dass das ganze sofort aus der Stetigkeit
> der
> > Exponentialfunktion folgt.
>
> Ah stimmt, daran habe ich nicht gedacht! Aber du meinst
> bestimmt nicht die Exponentialfunktion, sondern die
> allgemeine Potenzfunktion
>
> p: (0, [mm]\infty) \mapsto \IR,[/mm] x [mm]\rightarrow x^{\alpha}[/mm] mit
> [mm]\alpha \in \IR[/mm] ?
>  
> Mich hat es halt gewundert, da Fred damals geschrieben hat,
> dass dieser Fall ein Spezialfall für den Grenzwertsatz
> für Produkte ist.
>  
> Dann müsste man erst einmal beweisen, dass die allgemeine
> Potenzfunktion überall auf ihrem Definitionsbereich stetig
> ist. Hat da jemand eine Idee, wie man dies machen könnte?

Es ist [mm] $x^{\alpha}=e^{\alpha \ln x}$ [/mm]

Man benötigt also die Stetigkeit der Exponentialfunktion und von [mm] \ln. [/mm]

Es ist [mm] e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!} [/mm]  für x [mm] \in \IR. [/mm] Aus der Theorie der Potenzreihen folgt sofort, dass [mm] e^x [/mm] stetig ist. Damit ist [mm] \ln [/mm] als Umkeherfunktion einer stetigen Funktion ebenfalls stetig.

>  
>
> Viele Grüße,
>  X3nion


Bezug
                                                
Bezug
Grenzwertsätze für Potenzen ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 Do 03.08.2017
Autor: X3nion

Hallo Fred,
ach ja klar! Danke für deine Ausführungen, die Umschreibung habe ich nicht gesehen.
Dann macht alles nun Sinn.

Viele Grüße,
X3nion


> Es ist [mm]x^{\alpha}=e^{\alpha \ln x}[/mm]
>  
> Man benötigt also die Stetigkeit der Exponentialfunktion
> und von [mm]\ln.[/mm]
>  
> Es ist [mm]e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}[/mm]  für x [mm]\in \IR.[/mm]
> Aus der Theorie der Potenzreihen folgt sofort, dass [mm]e^x[/mm]
> stetig ist. Damit ist [mm]\ln[/mm] als Umkeherfunktion einer
> stetigen Funktion ebenfalls stetig.
>  >  
> >
> > Viele Grüße,
>  >  X3nion
>  


Bezug
                
Bezug
Grenzwertsätze für Potenzen ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Di 22.09.2009
Autor: abakus


> > Hallo,
>  >  es gibt die bekannten Sätze für die Grenzwerte einer
> > Summe, eines Produkts bzw. eines Quotienten von zwei
> > Zahlenfolgen.
>  >  Ich bin der Ansicht, dass außerdem noch gilt:
>  >  [mm](\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b)[/mm]
>  
>
> Das ist richtig, es ist ein Spezialfall für Grenzwerte
> eines Produktes (natürlich unter der Vor. , dass [mm](a_n)[/mm]
> konvergent ist und b nicht von n abhängt).
>  
>
> >  

> > und auch
> > [mm](\limes_{n\rightarrow\infty}a_n)^n =\limes_{n\rightarrow\infty}(a_n^n).[/mm]
>  
>
> Das ist im allg. falsch !
>  
> beispiel: [mm]a_n[/mm] = [mm]1+\bruch{1}{n}[/mm]
>  
> Dann ist [mm]\limes_{n\rightarrow\infty}a_n[/mm] = 1,
>
> also ( [mm]\limes_{n\rightarrow\infty}a_n )^n[/mm] = 1,
>  
> aber [mm]\limes_{n\rightarrow\infty}a_n^n = e[/mm]
>  
>
> FRED

Hallo Fred,
vielen Dank, darauf hätte ich selbst kommen müssen, zumal meine Frage gerade in diese Richtung zielte.
Mein Problem ist folgendes:
Ich will den Schülern (ohne Kenntnisse von Reihenentwicklungen) zeigen, dass [mm] \limes_{h\rightarrow 0}\bruch{e^h-1}{h}=1 [/mm] gilt.
Dazu wollte ich nutzen, dass [mm] e=\limes_{h\rightarrow 0}(1+h)^\bruch1h [/mm] ist und deshalb [mm] \limes_ {h\rightarrow 0}(e^h)=\limes_{h\rightarrow 0}(\limes_{h\rightarrow 0}((1+h)^\bruch1h)^h [/mm] )ist.
Wenn ich jetzt für [mm] \limes_{h\rightarrow 0}((1+h)^\bruch1h)^h [/mm]  schreiben dürfte [mm] \limes_{h\rightarrow 0}((1+h)^{\bruch1h*h}), [/mm] wäre mein Problem gelöst. Aber man darf ja den Exponenten h nicht einfach in den Grenzwertterm hineinziehen...
Gruß Abakus

>  

>
>
>
> >  

> > Ist das soweit korrekt oder gibt es "böse"
> > Gegenbeispiele?
>  >  Gruß Abakus
>  >    


Bezug
                        
Bezug
Grenzwertsätze für Potenzen ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Di 22.09.2009
Autor: fred97


> > > Hallo,
>  >  >  es gibt die bekannten Sätze für die Grenzwerte
> einer
> > > Summe, eines Produkts bzw. eines Quotienten von zwei
> > > Zahlenfolgen.
>  >  >  Ich bin der Ansicht, dass außerdem noch gilt:
>  >  >  [mm](\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b)[/mm]
>  
> >  

> >
> > Das ist richtig, es ist ein Spezialfall für Grenzwerte
> > eines Produktes (natürlich unter der Vor. , dass [mm](a_n)[/mm]
> > konvergent ist und b nicht von n abhängt).
>  >  
> >
> > >  

> > > und auch
> > > [mm](\limes_{n\rightarrow\infty}a_n)^n =\limes_{n\rightarrow\infty}(a_n^n).[/mm]
>  
> >  

> >
> > Das ist im allg. falsch !
>  >  
> > beispiel: [mm]a_n[/mm] = [mm]1+\bruch{1}{n}[/mm]
>  >  
> > Dann ist [mm]\limes_{n\rightarrow\infty}a_n[/mm] = 1,
> >
> > also ( [mm]\limes_{n\rightarrow\infty}a_n )^n[/mm] = 1,
>  >  
> > aber [mm]\limes_{n\rightarrow\infty}a_n^n = e[/mm]
>  >  
> >
> > FRED
>  Hallo Fred,
>  vielen Dank, darauf hätte ich selbst kommen müssen,
> zumal meine Frage gerade in diese Richtung zielte.
>  Mein Problem ist folgendes:
>  Ich will den Schülern (ohne Kenntnisse von
> Reihenentwicklungen) zeigen, dass [mm]\limes_{h\rightarrow 0}\bruch{e^h-1}{h}=1[/mm]
> gilt.


Wie hast Du denn Deinen Schülern [mm] e^x [/mm] für x [mm] \in \IR, [/mm] insbesondere für x [mm] \in \IR [/mm] \ [mm] \IQ [/mm] definiert  ?


FRED




>  Dazu wollte ich nutzen, dass [mm]e=\limes_{h\rightarrow 0}(1+h)^\bruch1h[/mm]
> ist und deshalb [mm]\limes_ {h\rightarrow 0}(e^h)=\limes_{h\rightarrow 0}(\limes_{h\rightarrow 0}((1+h)^\bruch1h)^h[/mm]
> )ist.
> Wenn ich jetzt für [mm]\limes_{h\rightarrow 0}((1+h)^\bruch1h)^h[/mm]
>  schreiben dürfte [mm]\limes_{h\rightarrow 0}((1+h)^{\bruch1h*h}),[/mm]
> wäre mein Problem gelöst. Aber man darf ja den Exponenten
> h nicht einfach in den Grenzwertterm hineinziehen...
>  Gruß Abakus
>  >  
>
> >
> >
> >
> > >  

> > > Ist das soweit korrekt oder gibt es "böse"
> > > Gegenbeispiele?
>  >  >  Gruß Abakus
>  >  >    
>  


Bezug
                                
Bezug
Grenzwertsätze für Potenzen ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Di 22.09.2009
Autor: abakus


> > > > Hallo,
>  >  >  >  es gibt die bekannten Sätze für die Grenzwerte
> > einer
> > > > Summe, eines Produkts bzw. eines Quotienten von zwei
> > > > Zahlenfolgen.
>  >  >  >  Ich bin der Ansicht, dass außerdem noch gilt:
>  >  >  >  [mm](\limes_{n\rightarrow\infty}a_n)^b =\limes_{n\rightarrow\infty}(a_n^b)[/mm]
>  
> >  

> > >  

> > >
> > > Das ist richtig, es ist ein Spezialfall für Grenzwerte
> > > eines Produktes (natürlich unter der Vor. , dass [mm](a_n)[/mm]
> > > konvergent ist und b nicht von n abhängt).
>  >  >  
> > >
> > > >  

> > > > und auch
> > > > [mm](\limes_{n\rightarrow\infty}a_n)^n =\limes_{n\rightarrow\infty}(a_n^n).[/mm]
>  
> >  

> > >  

> > >
> > > Das ist im allg. falsch !
>  >  >  
> > > beispiel: [mm]a_n[/mm] = [mm]1+\bruch{1}{n}[/mm]
>  >  >  
> > > Dann ist [mm]\limes_{n\rightarrow\infty}a_n[/mm] = 1,
> > >
> > > also ( [mm]\limes_{n\rightarrow\infty}a_n )^n[/mm] = 1,
>  >  >  
> > > aber [mm]\limes_{n\rightarrow\infty}a_n^n = e[/mm]
>  >  >  
> > >
> > > FRED
>  >  Hallo Fred,
>  >  vielen Dank, darauf hätte ich selbst kommen müssen,
> > zumal meine Frage gerade in diese Richtung zielte.
>  >  Mein Problem ist folgendes:
>  >  Ich will den Schülern (ohne Kenntnisse von
> > Reihenentwicklungen) zeigen, dass [mm]\limes_{h\rightarrow 0}\bruch{e^h-1}{h}=1[/mm]
> > gilt.
>  
>
> Wie hast Du denn Deinen Schülern [mm]e^x[/mm] für x [mm]\in \IR,[/mm]
> insbesondere für x [mm]\in \IR[/mm] \ [mm]\IQ[/mm] definiert  ?

Die kennen Potenzfunktionen [mm] f(x)=a^x [/mm] allgemein, und sie wissen, dass e eine "besondere" Zahl, eben dieser bewusste Grenzwert, ist.
Gruß Abakus

>  
>
> FRED
>  
>
>
>
> >  Dazu wollte ich nutzen, dass [mm]e=\limes_{h\rightarrow 0}(1+h)^\bruch1h[/mm]

> > ist und deshalb [mm]\limes_ {h\rightarrow 0}(e^h)=\limes_{h\rightarrow 0}(\limes_{h\rightarrow 0}((1+h)^\bruch1h)^h[/mm]
> > )ist.
> > Wenn ich jetzt für [mm]\limes_{h\rightarrow 0}((1+h)^\bruch1h)^h[/mm]
> >  schreiben dürfte [mm]\limes_{h\rightarrow 0}((1+h)^{\bruch1h*h}),[/mm]

> > wäre mein Problem gelöst. Aber man darf ja den Exponenten
> > h nicht einfach in den Grenzwertterm hineinziehen...
>  >  Gruß Abakus
>  >  >  
> >
> > >
> > >
> > >
> > > >  

> > > > Ist das soweit korrekt oder gibt es "böse"
> > > > Gegenbeispiele?
>  >  >  >  Gruß Abakus
>  >  >  >    
> >  


Bezug
                                        
Bezug
Grenzwertsätze für Potenzen ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Di 22.09.2009
Autor: fred97


>  Die kennen Potenzfunktionen [mm]f(x)=a^x[/mm] allgemein,

Und wie ist [mm] a^x [/mm] für x [mm] \in \IR [/mm] definiert ?

FRED


> und sie
> wissen, dass e eine "besondere" Zahl, eben dieser bewusste
> Grenzwert, ist.
>  Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]