matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGrenzwertsatz v Moivre-Laplace
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Grenzwertsatz v Moivre-Laplace
Grenzwertsatz v Moivre-Laplace < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertsatz v Moivre-Laplace: Beweis
Status: (Frage) überfällig Status 
Datum: 14:33 So 19.03.2006
Autor: dancingestrella

Hallo,

ich komme mit dem Beweis vom zentralen Grenzwertsatz von Moivre-Laplace nicht zurecht:

Seien [mm] $X_{i}, [/mm] i [mm] \in \IN$, [/mm] i.i.d. binomialverteilte Zufallsvariablen, [mm] $p=P(\{X_{i}=1\})\in [/mm] (0,1)$ die Erfolgswahrscheinlichkeit. Dann gilt:

[mm] $\mathcal{B}_{n,p} \{k \in \{0,...,n\}|a < (k-np)/\wurzel(np(1-p)) \le b\} \rightarrow \Phi(b) [/mm] - [mm] \Phi(a)$ [/mm]

Beweis: [mm] $S_{n}:= \summe_{i=1}^{n}X_{i}$ [/mm]
[mm] $\mathcal{B}_{n,p} \{k \in \{0,...,n\}|a < (k-np)/\wurzel(np(1-p)) \le b\}= [/mm] $ (WIESO?) [mm] $P\{a < (S_{n}-np)/(\wurzel(np(1-p)) \le b\} [/mm] = [mm] P\{ a < (\summe_{i=1}^{n}(X_{i}-E(X_{i}))/(\wurzel(n*Var(X_{i})) \le b\}=$ [/mm] (WIESO?) [mm] $P\{S_{n}\* \le b\} [/mm] - [mm] P\{S_{n}\*\le a\} \rightarrow \Phi(b) [/mm] - [mm] \Phi(a)$ [/mm]

Es wäre toll, wenn mir jemand die Gleichungen mit den Wieso´s erklären könnte, die verstehe ich nämlich nicht...

lg, dancingestrella

        
Bezug
Grenzwertsatz v Moivre-Laplace: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 So 19.03.2006
Autor: felixf

Hallo!

> ich komme mit dem Beweis vom zentralen Grenzwertsatz von
> Moivre-Laplace nicht zurecht:
>  
> Seien [mm]X_{i}, i \in \IN[/mm], i.i.d. binomialverteilte
> Zufallsvariablen, [mm]p=P(\{X_{i}=1\})\in (0,1)[/mm] die
> Erfolgswahrscheinlichkeit. Dann gilt:
>  
> [mm]\mathcal{B}_{n,p} \{k \in \{0,...,n\}|a < (k-np)/\wurzel(np(1-p)) \le b\} \rightarrow \Phi(b) - \Phi(a)[/mm]
>  
> Beweis: [mm]S_{n}:= \summe_{i=1}^{n}X_{i}[/mm]
>  [mm]\mathcal{B}_{n,p} \{k \in \{0,...,n\}|a < (k-np)/\wurzel(np(1-p)) \le b\}=[/mm]
> (WIESO?) [mm]P\{a < (S_{n}-np)/(\wurzel(np(1-p)) \le b\} [/mm]

Das ist einfach die Faltungseigenschaft der Binomialverteilung: Da die [mm] $X_i$ [/mm] unabhaengig [mm] $\mathcal{B}_{1,p}$-verteilt [/mm] sind, ist [mm] $\sum_{i=1}^n X_i$ $\mathcal{B}_{n,p}$-verteilt. [/mm]

(Allgemeiner: Ist $X [mm] \sim \mathcal{B}_{n,p}$ [/mm] und $Y [mm] \sim \mathcal{B}_{k,p}$ [/mm] und sind $X, Y$ unabhaengig, so ist $X + Y [mm] \sim \mathcal{B}_{n+k,p}$.) [/mm]

> [mm]= P\{ a < (\summe_{i=1}^{n}(X_{i}-E(X_{i}))/(\wurzel(n*Var(X_{i})) \le b\}=[/mm]
> (WIESO?) [mm]P\{S_{n}\* \le b\} - P\{S_{n}\*\le a\} \rightarrow \Phi(b) - \Phi(a)[/mm]

Das Wieso hier haengt ganz davon ab, was [mm] $S_n\*$ [/mm] ist. Das musst du schon dabeischreiben...

LG Felix


Bezug
                
Bezug
Grenzwertsatz v Moivre-Laplace: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 So 19.03.2006
Autor: dancingestrella

Hallo...

die Sache mit der Faltungseigenschaft verstehe ich nicht. Also der Schritt, wo [mm] $\mathcal{B}_{n,p}$ [/mm] nach $P$ gegangen wird: Wo z.B. bleibt das $k$?
Sorry, also wir haben definiert:
[mm] $S_{n}\*:= (\summe_{i=1}^{n}(X_{i} [/mm] - [mm] E(X_{i})))/(\wurzel(n*Var(X_{i}))$ [/mm]

lg, dancingestrella

Bezug
                        
Bezug
Grenzwertsatz v Moivre-Laplace: Antwort
Status: (Antwort) fertig Status 
Datum: 07:02 Mo 20.03.2006
Autor: felixf

Guten Morgen!

> die Sache mit der Faltungseigenschaft verstehe ich nicht.
> Also der Schritt, wo [mm]\mathcal{B}_{n,p}[/mm] nach [mm]P[/mm] gegangen
> wird: Wo z.B. bleibt das [mm]k[/mm]?

Nun, du musst dir veranschaulichen, wofuer die Schreibweise [mm] $\mathcal{B}_{n,p} \{k \in \{0,...,n\}|a < (k-np)/\wurzel(np(1-p)) \le b\}$ [/mm] steht. Das ist ja gerade die Summe der Elementarwahrscheinlichkeiten $P(X = k)$ mit $k [mm] \in \{k \in \{0,...,n\}|a < (k-np)/\wurzel(np(1-p)) \le b\}$, [/mm] falls $X$ irgendeine [mm] $\mathcal{B}_{n,p}$-verteilte [/mm] Zufallsvariable ist. Also ist es gleich $P(a < [mm] (X-np)/\wurzel(np(1-p)) \le [/mm] b)$, da $k [mm] \in \{ 0, \dots, n \}$ [/mm] alle Werte annimmt, die auch $X$ (mit W'keit $> 0$) annimmt.

So. Und $X$ ist nun (wegen der Faltung) gleich verteilt wie [mm] $S_n [/mm] = [mm] \sum_{i=1}^n X_i$. [/mm] Weshalb $P(a < [mm] (X-np)/\wurzel(np(1-p)) \le [/mm] b) = P(a < [mm] (S_n-np)/\wurzel(np(1-p)) \le [/mm] b)$ ist.

Verstehst du es jetzt?

>  Sorry, also wir haben definiert:
>  [mm]S_{n}\*:= (\summe_{i=1}^{n}(X_{i} - E(X_{i})))/(\wurzel(n*Var(X_{i}))[/mm]

Mmmh, aber dann ist das zweite ''WIESO?'' einfach nur $P(a < [mm] S_n* \le [/mm] b) = [mm] P(S_n* \le [/mm] b) - [mm] P(S_n* \le [/mm] a)$, da [mm] $\{ S_n* \le b \}$ [/mm] die disjunkte Vereinigung aus [mm] $\{ S_n* \le a \}$ [/mm] und [mm] $\{ a < S_n* \le b \}$ [/mm] ist (oder ueber Intervalle: [mm] $\left]-\infty, b\right] [/mm] = [mm] \left]-\infty, a\right] \cup \left]a, b\right]$)! [/mm] Kannst du es jetzt nachvollziehen?



LG Felix


Bezug
        
Bezug
Grenzwertsatz v Moivre-Laplace: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 23.03.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]