Großer Umordnungssatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:30 Mi 22.07.2009 | Autor: | ANTONIO |
Aufgabe | Es sei [mm] (a_i)_{i \in I} [/mm] eine summierbare Familie. Ferner seien [mm] I_k [/mm] , k [mm] \in [/mm] K, paarweise disjunkte Teilmengen von I, deren Vereinigung I ist. Dann ist sowohl jede Teilmenge [mm] (a_i)_{i \in I} [/mm] summierbar als auch die Familie [mm] (s_k)_{k\in K} [/mm] der Summe [mm] s_k [/mm] := [mm] \summe_{i \in I_k} a_i [/mm] |
Hallo,
Den Beweis bei Königsberger, der über die Beschränktheit der Menge der Partialsummen geht (Hauptkriterium für Summierbarkeit) jeweils für die Teilfamilien und für die Familie [mm] (s_k), [/mm] habe ich verstanden bis auf:
die Abschätzung bezüglich [mm] (s_k) [/mm] enthält:
[mm] sup_{J_v \in E(I_k{_v})} [/mm] von [mm] \summe_{v=1}^{n}\left| a \right|_J{_v} \le sup_{J \in E(I)} [/mm] von [mm] \left| a \right|_J [/mm] wobei v = 1 bis n sich wohl auf die Teilmengen [mm] {k_1,...k_n} \subset [/mm] K bezieht.
Meiner Meinung gilt nicht nur [mm] \le [/mm] sondern auch = . = ergibt sich meiner Meinung daraus, daß es kein Element von I gibt, das nicht auch Element einer Menge [mm] I_k [/mm] ist, oder? Gilt hier wieder die Argumentation, daß [mm] \le [/mm] ja für die Beweisführung ausreicht und nicht falsch, also richtig ist?
PS: paarweise disjunkte Teilmengen habe ich so verstanden, daß jede Teilmenge zu jeder Teilmenge disjunkt ist (ohne Überschneidung).
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Do 30.07.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:35 Sa 04.02.2012 | Autor: | Helbig |
Du hast völlig recht, es gilt sogar Gleichheit. Für das Hauptkriterium reicht eine obere Schranke, so daß die extra Überlegungen überflüssig sind. Sogar der Nachweis der Summierbarkeit von $ [mm] (s_k)$ [/mm] ist hier überflüssig, denn im Rest des Beweises wird genau diese Summierbarkeit direkt aus der Definition gezeigt.
|
|
|
|