matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieGrundlagen Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Graphentheorie" - Grundlagen Gruppen
Grundlagen Gruppen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundlagen Gruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:19 Do 21.09.2006
Autor: verachris3

Aufgabe
  Es sei $ [mm] G:=\IR^{2}\ \{0,0\} [/mm] $ die Menge aller geordneten Paare (x,y) $ [mm] \in \IR^{2}\ \{0,0\} [/mm] $ mit reelen Zahlen $ [mm] x,y,x^{2}+y^{2}>0. [/mm] $ Wir betrachten die Verknüpfung $ [mm] \circ, [/mm] $ die durch

$ [mm] \forall(x,y),(u,v) \in [/mm] $ G: $ [mm] (x,y)\circ(u,v) [/mm] $ := (x [mm] \* [/mm] u - y [mm] \* [/mm] v , x [mm] \* [/mm] v + y [mm] \* [/mm] u)

definiert ist. Zeigen sie $ [mm] (G,\circ) [/mm] $ ist eine abelsche Gruppe!

Bin gerade dabei mir die Grundlagen über Gruppen selber beizubringen!
Leider hapert es noch ab und zu!
Hierbei bräuchte ich etwas Hilfe!

Ich denke das neutrale Element e ist (1,1)

Aber wie zeige ich jetzt konkret, dass (x,y) [mm] \circ [/mm] e = (x,y) ?

Ähnlich geht es mir mit dem inversen Element:
Natürlich existiert es, aber zeigt man das indem man einfach für (u,v) -> -(x,y) in die Verknüpfung einsetzt?

Vielen Dank für eure Hilfe!

        
Bezug
Grundlagen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Do 21.09.2006
Autor: mathiash

Hallo und guten Tag,

hattest Du schon mal vor kurzem eine Frage dazu gestellt ?

Dann würde dies in den Diskussionsstrang von ''damals'' gehören.

Jedenfalls:

Das neutrale Element ist (1,0),

denn [mm] (1,0)\circ [/mm] (x,y)=_{Def.} [mm] (1\cdot [/mm] x - [mm] 0\cdot y,1\cdot [/mm] v + [mm] 0\cdot [/mm] y) = (x,y).

Um zu (x,y) das Inverse zu konstruieren, musst Du das folgende Gleichungssystem in den Variablen u,v lösen:

[mm] x\cdot [/mm] u - [mm] y\cdot [/mm] v =1
[mm] x\cdot v+y\cdot [/mm] u   =0



Gruss,

Mathias

Bezug
        
Bezug
Grundlagen Gruppen: Nachfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:34 Do 21.09.2006
Autor: verachris3

Aufgabe
  Es sei $ [mm] G:=\IR^{2}\ \{0,0\} [/mm] $ die Menge aller geordneten Paare (x,y) $ [mm] \in \IR^{2}\ \{0,0\} [/mm] $ mit reelen Zahlen $ [mm] x,y,x^{2}+y^{2}>0. [/mm] $ Wir betrachten die Verknüpfung $ [mm] \circ, [/mm] $ die durch

$ [mm] \forall(x,y),(u,v) \in [/mm] $ G: $ [mm] (x,y)\circ(u,v) [/mm] $ := (x*u - y*v , x*v + y*u)

definiert ist. Zeigen sie $ [mm] (G,\circ) [/mm] $ ist eine abelsche Gruppe!

Hallo nochmal,

das mit dem Inversen habe ich verstanden, aber mit dem neutralen Element komm ich noch nicht ganz zurecht, denn ist die 0 nicht in der Definitionsmenge ausgeschlossen?

Bezug
                
Bezug
Grundlagen Gruppen: Geklärt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:59 Do 21.09.2006
Autor: verachris3

Vielen Dank! Habs kapiert!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]