matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitGrundverständnis Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Grundverständnis Stetigkeit
Grundverständnis Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundverständnis Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 12.05.2011
Autor: Nerix

Aufgabe
[mm] a)f(x)=\begin{cases} 0, & \mbox{für } x \in [0;1] / \IQ \\ 1, & \mbox{für } x \in [0;1]\cap \IQ \end{cases} [/mm]
f ist in keinem Punkt stetig aus [0;1] !
b) [mm] f(x)=\begin{cases} 0, & \mbox{für } x\in [0;1] / \IQ \\ \bruch{1}{q}, & \mbox{für } x \in [0;1] \end{cases} [/mm]                            
[mm] x=\bruch{p}{q} [/mm] p,q [mm] \in \IN [/mm] und p,q teilerfremd
f ist stetig für alle [mm] a\in [/mm] [0;1] / [mm] \IQ [/mm] und unstetig für alle a [mm] \in \IQ \cap [/mm] [0;1]


Hallo,

ich steige gerade ins Thema Stetigkeit ein!(also nicht über meine Unwissenheit staunen^^)
Ich habe hier oben 2 Funktionen,welche auf Stetigkeit hin untersucht wurden.(Ergebnisse stehn dabei)
Nun ist meine Frage: Wie seh ich sowas bzw. wie berechne ich sowas??
ICH verstehe unter Stetigkeit,dass man eine Funktion zeichnen kann ohne den Stift abzusetzen. Aber mit dieser Ansicht kann ich die beiden oben genannten Bsps nicht nachvollziehn....

Mag mir wer helfen des zu verstehn?

Grüße
Nerix

        
Bezug
Grundverständnis Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Do 12.05.2011
Autor: kamaleonti

Moin,
> [mm]a)f(x)=\begin{cases} 0, & \mbox{für } x \in [0;1] / \IQ \\ 1, & \mbox{für } x \in [0;1]\cap \IQ \end{cases}[/mm]
>  
> f ist in keinem Punkt stetig aus [0;1] !
>  b) [mm]f(x)=\begin{cases} 0, & \mbox{für } x\in [0;1] / \IQ \\ \bruch{1}{q}, & \mbox{für } x \in [0;1] \end{cases}[/mm]
>                            
> [mm]x=\bruch{p}{q}[/mm] p,q [mm]\in \IN[/mm] und p,q teilerfremd
>  f ist stetig für alle [mm]a\in[/mm] [0;1] / [mm]\IQ[/mm] und unstetig für
> alle a [mm]\in \IQ \cap[/mm] [0;1]
>  Hallo,
>  
> ich steige gerade ins Thema Stetigkeit ein!(also nicht
> über meine Unwissenheit staunen^^)
>  Ich habe hier oben 2 Funktionen,welche auf Stetigkeit hin
> untersucht wurden.(Ergebnisse stehn dabei)
>   Nun ist meine Frage: Wie seh ich sowas bzw. wie berechne
> ich sowas??
>  ICH verstehe unter Stetigkeit,dass man eine Funktion
> zeichnen kann ohne den Stift abzusetzen. Aber mit dieser
> Ansicht kann ich die beiden oben genannten Bsps nicht
> nachvollziehn....

'Mit dem Stift durchzeichnen'. Diese beiden Beispiele sind dazu da, damit du dich von dieser Vorstellung verabschiedest.

>  
> Mag mir wer helfen des zu verstehn?

zu a)
Hier kannst du dir die Unstetigkeit gut mit dem [mm] \varepsilon- \delta- [/mm] Kriterium überlegen. Denk dran: rationale und irrationale Zahlen liegen jeweils dicht ineinander.

zu b)
Hier ist dsa Folgenkriterium besser geeignet. Für die Unstetigkeitsstellen [mm] x\in\IQ\cap[0,1] [/mm] finde eine Folge [mm] x_n, [/mm] die gegen x konvergiert, deren Bildfolge [mm] f(x_n) [/mm] allerdings nicht gegen f(x) konvergiert.

Die Stetigkeit in den irrationalen Zahlen zu beweisen ist etwas schwieriger. Sei [mm] x_n\to x\in[0,1]\backslash\IQ. [/mm] Hier ist zu zeigen: [mm] f(x_n)\to [/mm] f(x)=0.

Sei also [mm] \varepsilon>0 [/mm] (fest).
So gehts weiter:

i) Die Bilder aller irrationalen Folgenglieder von [mm] x_n [/mm] sind Null. Wir interessieren uns also nur noch für rationale Folgenglieder.

ii) Sind endlich viele [mm] x_n [/mm] rational so sind wir fertig (warum?)

Wir nehmen also an, es gibt unendlich viele rationale Folgenglieder.
Fast alle davon liegen in einer [mm] \delta- [/mm]  Umgebung von x, da [mm] x_n [/mm] gegen x konvergiert.

iii) Betrachte [mm] q\leq\frac{1}{\varepsilon}, q\in\IN. [/mm] Davon gibt es nur endlich viele (warum?).
Dann gibt es auch nur endlich viele rationale Zahlen in gekürzter Bruchdarstellung [mm] \frac{p}{q} [/mm] mit [mm] q\leq\frac{1}{\varepsilon}, [/mm] die in der [mm] \delta [/mm] Umgebung von x liegen (warum?).

Fast alle rationalen Zahlen [mm] \frac{p}{q} [/mm] in der [mm] \delta [/mm] Umgebung von x erfüllen folglich [mm] q>\frac{1}{\varepsilon}\gdw\frac{1}{q}<\varepsilon. [/mm]

Damit folgt aber [mm] f(x_n)<\varepsilon [/mm] für fast alle [mm] x_n. [/mm]

>  
> Grüße
>  Nerix

LG

P.S: Der Beweis ist nur ein Skizze. Ausdrücke wie 'fast alle' lassen sich selbstverständlich noch optimieren, aber ich denke so ist es klarer.

Bezug
                
Bezug
Grundverständnis Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 Do 12.05.2011
Autor: Nerix

Hallo,

super,danke für die ausführliche Antwort...vieles ist im Moment noch sehr unklar für mich,aber ich werde mal versuchen des so durchzudenken nach deiner "Anleitung".....Wenn ich des die nächsten Tage geschafft hab,dann geb ich Rückmeldung^^

Danke bis dahin
Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]