matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppe stets abelsch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Gruppe stets abelsch
Gruppe stets abelsch < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe stets abelsch: Hilfe, Schwierigkeiten
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 12.02.2011
Autor: Balsam

Aufgabe
Jede Gruppe ( H, [mm] \circ, [/mm] e) mit der Eigenschaft [mm] (\forall [/mm] a [mm] \in [/mm] H : a [mm] \circ [/mm] a = e) ist stets abelsch.

Wie kann ich dieses zeigen?

Ich weiß, dass [mm] \forall [/mm] a, b [mm] \in [/mm] H : (a´ [mm] \circ [/mm] b´ )= b´ [mm] \circ [/mm] a´
aber weiter habe ich keine Idee, wie ich das anwenden kan.

        
Bezug
Gruppe stets abelsch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 12.02.2011
Autor: kamaleonti

Hallo,
> Jede Gruppe ( H, [mm]\circ,[/mm] e) mit der Eigenschaft [mm](\forall[/mm] a
> [mm]\in[/mm] H : a [mm]\circ[/mm] a = e) ist stets abelsch.
>  Wie kann ich dieses zeigen?
>  
> Ich weiß, dass [mm]\forall[/mm] a, b [mm]\in[/mm] H : (a´ [mm]\circ[/mm] b´ )= b´
> [mm]\circ[/mm] a´
>  aber weiter habe ich keine Idee, wie ich das anwenden kan.

Hi,

Wenn du schon soweit bist, dass du $(a'  [mm] \circ [/mm]  b' )= (b' [mm] \circ [/mm]  a')$ für alle [mm] a,b\in [/mm] H gezeigt hast, bist du schon ganz nah am Ziel:

[mm] $e=a\circ [/mm] a= [mm] a\circ [/mm] a'$, also folgt wegen Eindeutigkeit des inversen Elements a=a'

Gruß



Bezug
                
Bezug
Gruppe stets abelsch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Sa 12.02.2011
Autor: Balsam

Das wars ?
aber wie schreibe ich es denn ausführlich auf?

Bezug
                        
Bezug
Gruppe stets abelsch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Sa 12.02.2011
Autor: kamaleonti

Guten Abend,
> Das wars ?
>  aber wie schreibe ich es denn ausführlich auf?

1. Beweis [mm] $(a\circ b)\circ(b'\circ [/mm] a')=e$ für alle a, [mm] b\in [/mm] H
2. Beweis $a=a'$ für alle [mm] $a\in [/mm] H$
3. Aus 1 uns 2 folgt [mm] $(a\circ b)\circ(b\circ [/mm] a)=e$, also ist [mm] $(a\circ [/mm] b)$ das (eindeutige) inverse Element von [mm] $(b\circ [/mm] a)$. Wegen 2 gilt dann Gleichheit.

Gruß

Bezug
                                
Bezug
Gruppe stets abelsch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Sa 12.02.2011
Autor: Balsam

Vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]