matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGruppenaxiome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Gruppenaxiome
Gruppenaxiome < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Fr 09.11.2007
Autor: rainman_do

Aufgabe
Es sei G eine nicht-leere Menge mit einer inneren Verknüpfung *:G [mm] \times [/mm] G [mm] \to [/mm] G, welche die folgenden Axiome erfüllt:

(AG) Assoziativgesetz: Für alle g,h,k [mm] \in [/mm] G gilt (g*h)*k=g*(h*k)

(RNE) Existenz eines rechtsneutralen Elements: Es existiert ein Element e [mm] \in [/mm] G mit g*e=g für alle g [mm] \in [/mm] G. Man nennt e ein rechtsneutrales Element (in G bzgl. *).

(RIE) Existenz eines rechtsinversen Elements: Für alle g [mm] \in [/mm] G existiert ein h [mm] \in [/mm] G mit g*h=e.

Zeigen Sie, dass G mit der angegebenen Verknüpfung eine Gruppe ist, gehen Sie hierzu wie folgt vor:

a) Zeigen Sie zuerst, dass ein rechtsinverses Element auch linksinvers ist
b) Folgern Sie danach, dass jedes rechtsneutrale Element auch linksneutral ist.

Hallo,

bin ein wenig am Verzweifeln bei dieser Aufgabe, ich komme einfach nicht auf den Trick bei a), ich hab schon einiges durchprobiert aber leider immer ergebnislos und bräuchte hier mal einen kleinen Ansatz.

zu b) hatte ich folgende idee:

Sei g [mm] \in [/mm] G und h (= [mm] g^{-1}) [/mm] das inverse Element zu g, dann gilt

g*e = g*(h*g) = (g*h)*g = e*g

        
Bezug
Gruppenaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Fr 09.11.2007
Autor: angela.h.b.


> zu b) hatte ich folgende idee:
>  
> Sei g [mm]\in[/mm] G und h (= [mm]g^{-1})[/mm] das inverse Element zu g, dann
> gilt
>  
> g*e = g*(h*g) = (g*h)*g = e*g

Hallo,

schreib vorweg noch

"für alle [mm] g\in [/mm] G gibt es ein [mm] h\in [/mm] g mit....
Also ist ..."

Dann an jeder Stelle das verwendete Gesetz erwähnen.


Ein Tip zu a)

Starte mit

Für alle g $ [mm] \in [/mm] $ G existiert ein h $ [mm] \in [/mm] $ G mit g*h=e.

Nun multipliziere beide Seiten von vorne mit h.

Etwas später mußt Du noch verwenden, daß natürlich auch h ein inverses Element c hat mit h*c=e.

Gruß v. Angela

Bezug
                
Bezug
Gruppenaxiome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 So 11.11.2007
Autor: rainman_do

Ah...sehr schön, vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]