matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Gruppenhomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Gruppenhomorphismus
Gruppenhomorphismus < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Di 30.10.2007
Autor: Tyskie84

Aufgabe
Es seien (G, *G) und (H, *H) zwei Gruppen. Eine Abbildung f: G [mm] \to [/mm] H heisst Gruppenhomomorphismus, falls für alle a,b [mm] \in [/mm] G gilt:
f(a *Gb) = f(a) *H f(b)

a) Es sei exp : [mm] (\IR, [/mm] +) [mm] \to (\IR, \*) [/mm] , x [mm] \mapsto e^{x} [/mm] Ist exp ein Gruppenhomomorphismus? (mit Beweis)
b) Es sei ln : [mm] (\IR^{+} [/mm] , [mm] \* [/mm] ) [mm] \to (\IR [/mm] , +) , x [mm] \to [/mm] lnx   Ist ln ein Gruppenhomomorphismus? (mit Beweis)

So mir ist klar dass das ein Gruppenhomomorphismus ist da ja offensichtlich [mm] e^{x+y} [/mm] = [mm] e^{x} \* e^{y} [/mm] aber wie soll ich das beweisen....
genau das selbe wie der natürliche Logarithmus ein Gruppenhomomorphismus ist!

Hat jemand eine Idee

        
Bezug
Gruppenhomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Di 30.10.2007
Autor: angela.h.b.


> Es seien (G, *G) und (H, *H) zwei Gruppen. Eine Abbildung
> f: G [mm]\to[/mm] H heisst Gruppenhomomorphismus, falls für alle a,b
> [mm]\in[/mm] G gilt:
>  f(a *Gb) = f(a) *H f(b)
>  
> a) Es sei exp : [mm](\IR,[/mm] +) [mm]\to (\IR, \*)[/mm] , x [mm]\mapsto e^{x}[/mm]
> Ist exp ein Gruppenhomomorphismus? (mit Beweis)
>  b) Es sei ln : [mm](\IR^{+}[/mm] , [mm]\*[/mm] ) [mm]\to (\IR[/mm] , +) , x [mm]\to[/mm] lnx  
> Ist ln ein Gruppenhomomorphismus? (mit Beweis)
>  So mir ist klar dass das ein Gruppenhomomorphismus ist da
> ja offensichtlich [mm]e^{x+y}[/mm] = [mm]e^{x} \* e^{y}[/mm] aber wie soll
> ich das beweisen....

Hallo,

Du weißt dich schon so viel. Mach' Dir klar, daß die Verknüpfung *_G hier das ganz normale "+" ist,
und *_H die ganz normale Multiplikation.

Jetzt schau nach, was für [mm] a,b\in \IR [/mm] bei

f(a+b) und bei f(a)*f(b) jeweils herauskommt.


>  genau das selbe wie der natürliche Logarithmus ein
> Gruppenhomomorphismus ist!

Beim Logarithmus entsprechend.

Gruß v. Angela


Bezug
                
Bezug
Gruppenhomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 30.10.2007
Autor: Tyskie84

Also einfach so?

f(a+b)= [mm] e^{a+b}=e^{a}\*e^{b}=f(a)\*f(b) [/mm]

und [mm] f(a)\*f(b)=lna\*lnb=ln(a+b)=f(a+b) [/mm]

so einfach? und dann halt alles noch korrekt aufschreiben mit behauptung, zu zeigen usw...

Gruß

Bezug
                        
Bezug
Gruppenhomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Di 30.10.2007
Autor: angela.h.b.


> Also einfach so?

So einfach. Ja.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]