matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGruppenordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Gruppenordnung
Gruppenordnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenordnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:43 Di 30.11.2004
Autor: S_A_N

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Kann folgende Aufgabe nicht lösen:

Man zeige: Jede Gruppe G der Ordnung 45 ist abelsch.
Hinweis: Man betrachte die Anzahl von möglichen p-Sylow-Untergruppen von G.

        
Bezug
Gruppenordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:50 Do 02.12.2004
Autor: Julius

Hallo SAN!

Ich empfehle dir erst einmal ein Studium unserer Forenregeln. Es gehört zur guten Sitte in unserem Forum, dass man nicht nur Aufgaben hier reinstellt, sondern wenigstens eine Begrüßung, eigene Ideen und konkrete Verständnisfragen hinzufügt. Ich bitte dich dies in Zukunft zu beachten.

Zur Aufgabe:

Für die Anzahl [mm] $n_3$ [/mm] der $3$-Sylowgruppen gilt notwendigerweise

[mm] $n_3 \equiv [/mm] 1 [mm] \pmod{3}$ [/mm]       und       [mm] $n_3|5$. [/mm]

Daraus folgt: [mm] $n_3=1$. [/mm]

Für die Anzahl [mm] $n_5$ [/mm] der $5$-Sylowgruppen gilt notwendigerweise

[mm] $n_5 \equiv [/mm] 1 [mm] \pmod{5}$ [/mm]       und       [mm] $n_5|9$. [/mm]

Daraus folgt: [mm] $n_5=1$. [/mm]

Wir haben also genau eine $3$-Sylowgruppe und genau eine $5$-Sylowgruppe.

Es folgt:

$G = [mm] G_1 \times G_2$ [/mm]

mit

[mm] $|G_1|=5$ [/mm]    und    [mm] $|G_2|=9$. [/mm]

Warum folgt daraus jetzt die Behauptung? Hast du eine Idee?

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]