matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungH-Methode -1/x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - H-Methode -1/x
H-Methode -1/x < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

H-Methode -1/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mo 07.12.2009
Autor: Zero_112

Aufgabe
Ableitungsfunktion von -1/x mit dem Differenzenquotienten (h-Methode)  

Ist mein Rechenweg soweit richtig? (ohne dem Minus vor der Funktion hab ichs gekonnt, nur ich weiß nicht, mein Rechenweg optimal ist)

[mm] m_{s}(x) [/mm] = [mm] \bruch{-\bruch{1}{(x+h)} - (-\bruch{1}{x})}{h} [/mm] = [mm] (-\bruch{1}{(x+h)} [/mm] + [mm] \bruch{1}{x})*\bruch{1}{h} [/mm] = [mm] (-\bruch{x}{x*(x+h)} +\bruch{x+h}{x*(x+h)}) *\bruch{1}{h} [/mm] = [mm] \bruch{-x+(x+h)}{x(x+h)*h} [/mm] = [mm] \bruch{-x+x+h}{x^{2}+hx*h}= \bruch{h}{x^{2}+hx*h} [/mm]  = [mm] \bruch{1} {x^{2}+hx} [/mm] = [mm] \limes_{h\rightarrow\ 0} \bruch{1}{x^{2}+hx} [/mm] = [mm] \bruch{1}{x^{2}} [/mm]
                
                


        
Bezug
H-Methode -1/x: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mo 07.12.2009
Autor: schachuzipus

Hallo Zero_112,

> Ableitungsfunktion von -1/x mit dem Differenzenquotienten
> (h-Methode)
> Ist mein Rechenweg soweit richtig? (ohne dem Minus vor der
> Funktion hab ichs gekonnt, nur ich weiß nicht, mein
> Rechenweg optimal ist)
>  
> [mm] $]m_{s}(x)= \bruch{-\bruch{1}{(x+h)} - (-\bruch{1}{x})}{h}= (-\bruch{1}{(x+h)} [/mm] + [mm] \bruch{1}{x})*\bruch{1}{h} [/mm] = [mm] (-\bruch{x}{x*(x+h)} +\bruch{x+h}{x*(x+h)}) *\bruch{1}{h} [/mm] = [mm] \bruch{-x+(x+h)}{x(x+h)*h}$ [/mm] [ok]

> $= [mm] \bruch{-x+x+h}{\red{(}x^{2}+hx\red{)}*h}= \bruch{h}{\red{(}x^{2}+hx\red{)}*h}$ [/mm]

Hier hast du wichtige Klammern vergessen ...

Kürze das h doch direkt weg, dann brauchst du im Nenner nicht mal auszumultiplizieren

>  = [mm] $\bruch{1} {x^{2}+hx}$ [/mm]

Hier hast du's wieder richtig, das lässt vermuten, dass du die Klammer oben im Tippgewusel nur vergessen hast mit aufzuschreiben

> =

Hier kein "=" !!

> [mm] \limes_{h\rightarrow\ 0} \bruch{1}{x^{2}+hx} [/mm] = [mm] \bruch{1}{x^{2}}$ [/mm] [ok]

Sehr schön!

LG

schachuzipus


Bezug
                
Bezug
H-Methode -1/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Mo 07.12.2009
Autor: Zero_112

Okay, danke :) Aber das  " Hier kein "=" !! " habe ich nicht ganz genau verstanden... wo genau soll kein "=" hin? Vor dem Grenzwert?

Bezug
                        
Bezug
H-Methode -1/x: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mo 07.12.2009
Autor: schachuzipus

Hallo nochmal,

> Okay, danke :) Aber das  " Hier kein "=" !! " habe ich
> nicht ganz genau verstanden... wo genau soll kein "=" hin?
> Vor dem Grenzwert?

Ganz genau, du formst mit "="..."=" um, bis zum Grenzprozess, dann mache einen Semikolon oder ne neue Zeile, aber kein "="

Der Wert des Bruches [mm] $\frac{f(x+h)-f(x)}{h}$ [/mm] ist ja nicht der Wert im Grenzbereich, also von [mm] $\lim\limits_{h\to 0}.....$ [/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]