matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikHILFE! Bayes und tot. W.-keit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - HILFE! Bayes und tot. W.-keit
HILFE! Bayes und tot. W.-keit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

HILFE! Bayes und tot. W.-keit: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:51 Mi 18.01.2006
Autor: onkelbenny

Aufgabe 1
Eine Krankheit kommt bei ca. 0,5% der Bevölkerung vor. Ein Test zur Auffindung der Krankheit führt bei 99% der Kranken zu einer Reaktion, aber auch bei 2% der Gesunden.
Frage: Wie groß ist die Wahrscheinlichkeit, dass eine Person, bei der die Reaktion eintritt, die Krankheit auch wirklich hat?

Aufgabe 2
Auf einer Ausstellung sind von 12 Gemälden 10 Originale. Ein Besucher wählt zufällig ein Bild aus, befragt aber, bevor er es kauft einen Experten nach dessen Meinung. Dieser gibt im Mittel bei 9 von 10 Werken eine richtige Beurteilung ab, unabhängig davon, ob das vorgelegte Bild ein Original oder eine Fälschung ist. Wenn der Experte entscheidet, dass das Bild eine Fälschung sei, gibt der Besucher das Bild zurück und wählt ein anderes.
Frage: Mit welcher Wahrscheinlichkeit ist dieses dann ein Original? (Hinweis: Zunächst Aufgabe 3 lösen)

Aufgabe 3
Sei A das Ereignis, dass das zuerst gewählte Gemälde ein Original ist, und Ba das Ereignis, dass der Experte es für ein Original hält (siehe Aufg. 2).
Man Berechne: P(A|nichtB) und P(nichtA|nichtB)

mein ansatz:

1)
P(B1)= 0,005 (kranke personen)
P(B2)= 0,995 (nicht krank)
P(A)= Reaktion pos. auf Test
P(A|B1)= 0,99
P(A|B2)= 0,002
P(B1|A)= ???
nach Bayes:
P(B1|A)= P(B1) * P(A|B1) / P(B1) * P(A|B1) + P(B2) * P(A|B2)
P(B1|A)= 0,1984
Korrekt???


2)
P(B1)= 10/12 (Original)
P(B2)= 2/12 (Fälschung)
P(A|B1)= 9/11
P(A|B2)= 10/11
P(A)= ???
nach Formel der totalen Wahrscheinlichkeit
P(A)= P(B1) * P(A|B1) + P(B2) * P(A|B2)
P(A)= 10/12 * 9/11 + 2/12 * 10/11
P(A)= 5/6
Korrekt???


3)
Leider kein Lösungsansatz vorhande.
ich hoffe ihr könnt mir helfen. ich bedanke mich schon mal jetzt im voraus. bin über jeden tip oder ratschlag/lösung dankbar!!!
BIG THX!!!
benny

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=27548

        
Bezug
HILFE! Bayes und tot. W.-keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Mi 18.01.2006
Autor: Astrid

Hallo,

> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.matheboard.de/thread.php?threadid=27548

danke für den Hinweis. Dort hat sich ja bereits eine Diskussion ergeben. Wenn du nicht weiterkommst, kannst du ja gern wieder hier Fragen stellen. Aber es wäre besser, wenn du dich für ein Forum entscheidest, damit sich keine Paralleldiskussionen ergeben.

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]