matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisHäufungspunkte einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Häufungspunkte einer Folge
Häufungspunkte einer Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 So 20.11.2005
Autor: AriR

Frage wurde nirgendswo anders gestellt!

Hey Leute, ich soll beweisen, dass jede Folge nur endlich viele Häufungspunkte hat.

Ich wollte dies per Widerspruchsbeweis zeigen.

Dafürn habe ich angenommen, es würde unendlich viele Häufungspunkte geben.  
[mm] \Rightarrow \forall [/mm] k € [mm] \IN [/mm] : [mm] a_{n}_{k} [/mm] konvergiert, wobei alle Teilfolgen gegen einen anderen Wert konvergieren.

Jetzt muss ich zeigen, dass dies nicht sein kann, ich weiß aber nicht wie. Hat einer von euhc vieleicht eine Idee.
Danke im voraus :)... gruß ari

        
Bezug
Häufungspunkte einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 So 20.11.2005
Autor: andreas

hi

woher kommt denn diese aufgabe? ich glaube nicht, das die aussage richtig ist! sei nämlich [mm] $(x_k)_{k \in \mathbb{N}}$ [/mm] eine abzählung einer abzählbaren menge in einem metrischen raum, dann hat die folge $ [mm] (a_n)_{n \in \mathbb{N}}$ [/mm] mit $a_ 1 := [mm] x_1, a_2 [/mm] := [mm] x_1, a_3 [/mm] := [mm] x_2, a_4 [/mm] := [mm] x_1, a_5 [/mm] := [mm] x_2, a_6 [/mm] := [mm] x_3, a_7 [/mm] := [mm] x_1, [/mm] ...$, also die folge die aus den immer um ein folgenglied aus [mm] $x_k$ [/mm] anwachsenden teilfongen von [mm] $(x_k)$ [/mm] besteht zumindest die menge $X := [mm] \{ x_k : k \in \mathbb{N} \}$ [/mm] als häufungspunkte.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]