Häufungswerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:38 So 25.11.2007 | Autor: | MaRaQ |
Aufgabe | a) Es sei [mm] (a_n) [/mm] eine monotone Folge. Beweisen Sie: jeder Häufungswert von [mm] (a_n) [/mm] ist auch Grenzwert von [mm] (a_n).
[/mm]
b) Sei n [mm] \mapsto a_n [/mm] eine Anordnung von [mm] \IQ. [/mm] Zeigen Sie, dass jede reelle Zahl Häufungswert der Folge [mm] (a_n) [/mm] ist. |
Zu a) habe ich mir den Beweis folgendermaßen "gestrickt":
Sei a Häufungspunkt der Folge [mm] (a_n).
[/mm]
Dann gibt es eine Teilfolge [mm] (a_{n_k}) [/mm] mit [mm] lim_{n \to \infty} (a_{n_k}) [/mm] = a.
Sei oBdA [mm] (a_n) [/mm] monoton steigend.
Dann ist auch [mm] (a_{n_k}) [/mm] monoton steigend und es gilt: a = [mm] sup(a_{n_k}), [/mm]
denn jede monoton steigende, beschränkte Folge konvergiert gegen ihr Supremum. (Satz a.d. Vorlesung).
Wegen [mm] (a_{n_k}) [/mm] Teilfolge von [mm] (a_n), [/mm] monoton steigender Folge, gilt weiterhin: a = [mm] sup(a_n) [/mm] und [mm] (a_n) [/mm] konvergiert gegen a.
Für [mm] (a_n) [/mm] monoton fallend analog.
Kann man das so machen?
Ich finde außerdem den Schritt etwas "grob", in dem ich das Supremum der Teilfolge mit dem Supremum der Folge "überein-erkläre" - könnte man das nicht irgendwie eleganter lösen?
Zur b)
Hier bin ich ziemlich augeschmissen. Mir ist zwar klar, warum das (für rationale Zahlen) so gelten muss - schließlich kann man jede reelle Zahl in unendlich vielen unterschiedlichen Brüchen darstellen, ob jetzt 1, 1,3 , 1,642934762 oder was auch immer - solange sie rational sind.
Bei den irrationalen Zahlen sieht das ja schon wieder ganz anders aus - und wie man das dann in einen Beweis umsetzt - da habe ich, ehrlich gesagt, keinen blassen Schimmer.
Ich wäre für jeden Tipp sehr dankbar.
Gruß, Maraq
|
|
|
|
> a) Es sei [mm](a_n)[/mm] eine monotone Folge. Beweisen Sie: jeder
> Häufungswert von [mm](a_n)[/mm] ist auch Grenzwert von [mm](a_n).[/mm]
> b) Sei n [mm]\mapsto a_n[/mm] eine Anordnung von [mm]\IQ.[/mm] Zeigen Sie,
> dass jede reelle Zahl Häufungswert der Folge [mm](a_n)[/mm] ist.
> Zu a) habe ich mir den Beweis folgendermaßen "gestrickt":
>
> Sei a Häufungspunkt der Folge [mm](a_n).[/mm]
> Dann gibt es eine Teilfolge [mm](a_{n_k})[/mm] mit [mm]lim_{n \to \infty} (a_{n_k})[/mm]
> = a.
> Sei oBdA [mm](a_n)[/mm] monoton steigend.
> Dann ist auch [mm](a_{n_k})[/mm] monoton steigend und es gilt: a =
> [mm]sup(a_{n_k}),[/mm]
> denn jede monoton steigende, beschränkte Folge konvergiert
> gegen ihr Supremum. (Satz a.d. Vorlesung).
> Wegen [mm](a_{n_k})[/mm] Teilfolge von [mm](a_n),[/mm] monoton steigender
> Folge, gilt weiterhin: a = [mm]sup(a_n)[/mm] und [mm](a_n)[/mm] konvergiert
> gegen a.
> Für [mm](a_n)[/mm] monoton fallend analog.
>
> Kann man das so machen?
> Ich finde außerdem den Schritt etwas "grob", in dem ich
> das Supremum der Teilfolge mit dem Supremum der Folge
> "überein-erkläre" - könnte man das nicht irgendwie
> eleganter lösen?
Das Supremum der Teilfolge ist, weil es sich um eine Teilfolge einer monoton wachsenden Folge handelt, [mm] $\leq$ [/mm] dem Supremum der Folge. Andererseits: weil es zu jedem Glied der Folge ein Glied der Teilfolge gibt, das in der Folge später kommt, also [mm] $\geq$ [/mm] ist, muss das Supremum der Teilfolge auch [mm] $\geq$ [/mm] dem Supremum der Folge sein: insgesamt folgt, dass die beiden Suprema gleich sein müssen.
>
> Zur b)
> Hier bin ich ziemlich augeschmissen.
Zeige zuerst, dass es in jeder noch so kleinen punktierten Umgebung [mm] $U_{\varepsilon}(x)\backslash\{x\}$ [/mm] einer reellen Zahl $x$ (ganz gleich ob rational oder nicht) eine rationale Zahl gibt (somit also ein Glied der Folge [mm] $a_n$). [/mm] Dies ist möglich, weil man jedes noch so kleine [mm] $\varepsilon [/mm] > 0$ mit einer natürlichen Zahl derart multiplizieren kann, dass es grösser wird, als eine geeignete ganze Zahl [mm] ($\geq [/mm] 1$). Teilt man dann diese Zahl durch den "Vergrösserungsfaktor", so erhält man die gewünschte rationale Zahl aus der punktierten Umgebung von $x$.
Hat man dies gezeigt, so kann man zu jedem [mm] $x\in \IR$ [/mm] eine Teilfolge mit Limes $x$ konstruieren, indem man sukzessive Glieder der Teilfolge aus immer kleineren Umgebungen von $x$ wählt (Umgebungen, die keines der bereits gewählten - ja nur endlich[!] vielen - Folgenglieder enthalten).
|
|
|
|