Häufungswerte spezieller Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sei eine beschränkte Folge [mm] $a_{n}$, [/mm] für die gilt:
[mm] $\lim_{n\to\infty}(a_{n}-a_{n-1}) [/mm] = 0$.
Zeige: Jeder Wert a mit [mm] $\liminf_{n\to\infty}a_{n} \le [/mm] a [mm] \le \limsup_{n\to\infty}a_{n}$ [/mm] ist Häufungswert der Folge [mm] a_{n}. [/mm] |
Hallo!
Ich wollte mich an obiger Aufgabe versuchen, bin mir aber mit meiner Argumentation noch nicht ganz sicher:
Beweis:
Setze [mm] $I:=\liminf_{n\to\infty}a_{n}$ [/mm] und [mm] $S:=\limsup_{n\to\infty}a_{n}$.
[/mm]
Wenn [mm] a_{n} [/mm] konvergent, ist die Aussage klar (Dann gilt $I= S = GW$ der Folge [mm] a_{n}, [/mm] der einziger Häufungspunkt der Folge ist). Im Folgenden sei [mm] a_{n} [/mm] nicht konvergent, dann gilt [mm] $I\not= [/mm] S$.
Wähle [mm] $a\in \Big[I,S\Big]$ [/mm] beliebig, wähle [mm] $\varepsilon [/mm] > 0$ beliebig. Zu zeigen ist, dass [mm] $|a_{n}-a| [/mm] < [mm] \epsilon$ [/mm] für unendlich viele [mm] n\in\IN [/mm] gilt.
Nach Voraussetzung gibt es unendlich viele n mit [mm] $|a_{n}-I| [/mm] < [mm] \varepsilon$ [/mm] (wir bezeichnen die Folge dieser n mit [mm] I_{k} [/mm] ), und unendlich viele n mit [mm] $|a_{n}-S| [/mm] < [mm] \varepsilon$ [/mm] (Folge dieser n heißt [mm] S_{k} [/mm] ).
Fall 1: [mm] $\epsilon \ge \frac{S-I}{2}$.
[/mm]
Falls $a [mm] \ge I+\frac{S-I}{2}$, [/mm] so sind fast alle Glieder von [mm] a_{S_{k}} [/mm] auch in der [mm] \varepsilon-Umgebung [/mm] von a (größer als S können nur endlich viele Glieder von [mm] a_{S_{k}} [/mm] sein), im Fall $a < [mm] I+\frac{S-I}{2}$ [/mm] sind fast alle Glieder von [mm] a_{I_{k}} [/mm] auch in der [mm] \varepsilon-Umgebung [/mm] von a. Damit gilt also in beiden Fällen [mm] $|a_{n}-a| [/mm] < [mm] \varepsilon$ [/mm] für unendlich viele n.
Fall 2: [mm] $\epsilon [/mm] < [mm] \frac{S-I}{2}$.
[/mm]
In diesem Fall entsteht anschaulich eine "Lücke" zwischen den beiden [mm] \varepsilon- [/mm] Umgebungen von S und I.
Da [mm] $(a_{n}-a_{n-1})_{n\in\IN}$ [/mm] konvergent, existiert zum vorgegebenen [mm] \varepsilon [/mm] ein [mm] N\in\IN [/mm] sodass [mm] $|a_{n}-a_{n-1}|<\varepsilon$.
[/mm]
Nun wähle ich [mm] k\in [/mm] N so, dass [mm] I_{k} [/mm] > N (geht, weil ja [mm] I_{k} [/mm] und [mm] S_{k} [/mm] gegen unendlich gehen). Dann wähle ich [mm] l\in\IN [/mm] so, dass [mm] S_{l} [/mm] > [mm] I_{k} [/mm] ist.
Nun gibt es ein [mm] n\in[I_{k},S_{l}] [/mm] mit [mm] $|a_{n}-a|<\varepsilon$. [/mm] Das ist anschaulich klar, weil nun die Folgenglieder nur noch [mm] \varepsilon [/mm] voneinander entfernt sein dürfen, aber wie schreibe ich das mathematisch hin?
Danach kann man dieses Vorgehen iterativ fortsetzen, indem nun N:= [mm] S_{l} [/mm] gesetzt wird. So erhält man unendlich viele [mm] n\in\IN, [/mm] für welche die Bedingung erfüllt ist.
------
Stimmt das so? Gibt es kürzere Möglichkeiten, das du zu beweisen?
Grüße und danke für Eure Hilfe,
Stefan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:16 Do 31.12.2009 | Autor: | zahllos |
Hallo,
versuch es doch einfach mit einem indirekten Beweis: Wenn a zwischen I und S liegt, aber kein Häufungspunkt der Folge ist, dann gibt es eine Umgebung von a in der nur endlich viele Folgenglieder liegen. Was folgt daraus, wenn andererseits die Differenz der Folgenglieder eine Nullfolge sein soll?
|
|
|
|
|
Hallo zahllos,
erstmal vielen Dank für deine Antwort!
> versuch es doch einfach mit einem indirekten Beweis: Wenn a
> zwischen I und S liegt, aber kein Häufungspunkt der Folge
> ist, dann gibt es eine Umgebung von a in der nur endlich
> viele Folgenglieder liegen. Was folgt daraus, wenn
> andererseits die Differenz der Folgenglieder eine Nullfolge
> sein soll?
Also, für irgendein [mm] \varepsilon [/mm] liegen jetzt in [mm] $(a-\varepsilon, a+\varepsilon)$ [/mm] nur endlich viele Folgenglieder. Da sich nun aber sowohl "oberhalb" von a unendlich viele Folgenglieder als auch "unterhalb" von a unendlich viele Folgenglieder aufhalten, müssen die Folgenglieder immer durch die Umgebung durch (ich bekomm's nicht hin, dass exakter zu schreiben, wie kann ich das machen??).
Da die Differenz der Folgenglieder eine Nullfolge ist, bedeutet das, dass ab einem bestimmten N alle Folgenglieder nur noch einen Abstand kleiner gleich [mm] \varepsilon [/mm] voneinander haben, das bedeutet, dass sie dann garantiert bei jedem "Durchlauf" durch die [mm] \varepsilon [/mm] - Umgebung von a einmal innerhalb der Umgebung liegen.
>> Naja, und dann entsteht ein Widerspruch. Aber wie kann ich das exakter ausdrücken?
>> Und noch eine Frage: Ich habe jetzt zwar das Gefühl, dieses Problem mit meiner Argumentation umgangen zu haben, aber die Negation der Aussage lautet ja nicht: Es gibt ein a, für das es nicht funktioniert, sondern beliebig viele. Gibt das ein Problem?
Danke für Eure Hilfe!
Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:04 Fr 01.01.2010 | Autor: | zahllos |
Hallo Steppenhahn,
deine Argumentation ist richtig, manchmal kann man halt auch in der Mathematik nicht alles in Formeln packen! Wenn jeweils unendlich viele Folgenglieder in einer Umgebung der beiden Häufungspunkte sein sollen, aber im Intervall [mm] (a-\varepsilon;a+\varepsilon) [/mm] nur endich viele Folgenglieder sind, so heißt das, dass der Abstand zweier Folgenglieder mindestens [mm] 2\varepsilon [/mm] betragen muß, schon hast du deinen Widerspruch. Da a beliebig gewählt war, ergibt sich dieser Widerspruch für jeden Punkt zwischen den größten und dem kleinsten Häufungspunkt der Folge.
|
|
|
|
|
Hallo zahllos,
dann danke ich dir für deine Hilfe!
Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:03 Sa 02.01.2010 | Autor: | fred97 |
Dann machen wir es mal exakt:
Es sei $I <a<S$ und [mm] $a_n \notin [/mm] U [mm] :=(a-\varepsilon;a+\varepsilon) [/mm] $ für fast alle n in [mm] \IN. [/mm] Also gibt es ein N [mm] \in \IN [/mm] mit
(*) [mm] $a_n \notin [/mm] U [mm] :=(a-\varepsilon;a+\varepsilon) [/mm] $ und (**) [mm] $|a_{n+1} -a_n|< \varepsilon$ [/mm] für n >N
Sei n>N.
Fall [mm] 1:a_n \le [/mm] a. Annahme: [mm] a_{n+1}> [/mm] a. Dann (wegen (*) ):
[mm] a_n \le a-\varepsilon [/mm] und [mm] a_{n+1}> a+\varepsilon
[/mm]
Somit: [mm] $|a_{n+1}-a_n| [/mm] = [mm] a_{n+1}-a_n \ge [/mm] 2 [mm] \varepsilon$ [/mm] . Widerspruch zu (**). Dann ist also: [mm] a_{n+1}\le [/mm] a. Induktiv sieht man dann
[mm] a_m \le [/mm] a für fast alle m.
Dann ist aber S kein Haüfungspunkt von [mm] (a_n) [/mm] ! Widerspruch.
Fall [mm] 2:a_n \ge [/mm] a. Wie im Fall 1 erhält man den Widerspruch: I ist kein Häufungspunkt von [mm] (a_n).
[/mm]
FRED
|
|
|
|
|
Hallo Fred,
vielen Dank für deine Antwort!
Genau so etwas habe ich gemeint
Grüße,
Stefan
|
|
|
|