matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraHalbgruppenhomomorphismen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Halbgruppenhomomorphismen
Halbgruppenhomomorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 So 24.10.2010
Autor: l1f3x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe gerade folgendes Problem: Es geht in einer Aufgabe hier darum, zu zeigen, dass ein Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen kein Monoidhomomorphismus ist. Dabei habe ich schon folgendes, grundlegendes Problem:
Warum gilt die bei Gruppen übliche Argumentation, dass das Bild des neutralen Elementes der einen Gruppe dem neutralen Element der anderen Gruppe entspricht, hier nicht? Damit meine ich folgendes:

[mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H [/mm]


        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:40 So 24.10.2010
Autor: felixf

Moin!

>  ich habe gerade folgendes Problem: Es geht in einer
> Aufgabe hier darum, zu zeigen, dass ein
> Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen
> kein Monoidhomomorphismus ist. Dabei habe ich schon
> folgendes, grundlegendes Problem:
> Warum gilt die bei Gruppen übliche Argumentation, dass das
> Bild des neutralen Elementes der einen Gruppe dem neutralen
> Element der anderen Gruppe entspricht, hier nicht? Damit
> meine ich folgendes:
>  
> [mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H[/mm]

Wenn $f$ surjektiv ist, gilt dies.

$f$ muss aber nicht surjektiv sein.

Und das, was du hingeschrieben hast, ist auch nicht das Argument, was man in Gruppen benutzt. Da macht man naemlich: [mm] $f(e_G) [/mm] = [mm] f(e_G [/mm] * [mm] e_G) [/mm] = [mm] f(e_G) [/mm] * [mm] f(e_G)$; [/mm] und wenn man mit [mm] $f(e_G)^{-1}$ [/mm] multipliziert, steht da [mm] $e_H [/mm] = [mm] f(e_G)$. [/mm]

Das meiste davon geht in einer Halbgruppe auch, aber der entscheidene Schritt, naemlich die Existenz von [mm] $f(e_G)^{-1}$, [/mm] die ist im Allgemeinen nicht gegeben!

(Und daran scheitert es dann auch...)

Was fuer echte Halbgruppen (die nicht gleichzeitig Gruppen sind) kennst du denn?

LG Felix


Bezug
                
Bezug
Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 So 24.10.2010
Autor: l1f3x

Danke schonmal! Mir ist jetzt klarer wo genau das Problem hier liegt. Als Monoide fallen mir die natürliche Zahlen ein, mit Addition oder Multiplikation als Verknüpfung. Da habe ich aber keine Idee wie ich einen entsprechenden Homomorphismus konstruieren könnte. Deshalb habe ich es mal mit dem Monoid versucht, der aus der Potenzmenge und der Inklusion als Verknüpfung besteht:

Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm] sind Monoide. Dann müsste folgende Abbildung:

[mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
Dabei ist m ein festes Element von M. Dies müsste ein Halbgruppenhomomorphismus sein. Aber da [mm]f(M)=M\not=N[/mm] kein Monoidhomomorphismus. Stimmt das? Gibt es da auch einfachere Beispiele?

Bezug
                        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 So 24.10.2010
Autor: felixf

Moin!

> Danke schonmal! Mir ist jetzt klarer wo genau das Problem
> hier liegt. Als Monoide fallen mir die natürliche Zahlen
> ein, mit Addition oder Multiplikation als Verknüpfung.

Die natuerlichen Zahen (inklusive Null!) zusammen mit der Multiplikation sind gut. Du kannst einen einfachen Halbgruppenmonomorphismus [mm] $\IN \to \IN \times \IN$ [/mm] angeben, der kein Monoidhomomorphismus ist.

> Da
> habe ich aber keine Idee wie ich einen entsprechenden
> Homomorphismus konstruieren könnte. Deshalb habe ich es
> mal mit dem Monoid versucht, der aus der Potenzmenge und
> der Inklusion als Verknüpfung besteht:
>  
> Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm]
> sind Monoide. Dann müsste folgende Abbildung:
>  
> [mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
>  
> Dabei ist m ein festes Element von M.

Warum nicht einfach gleich $f$ als Inklusion $G [mm] \to [/mm] H$? Das reicht hier schon voellig.

> Dies müsste ein
> Halbgruppenhomomorphismus sein.

Ja, das duerfte es.

> Aber da [mm]f(M)=M\not=N[/mm] kein
> Monoidhomomorphismus. Stimmt das?

Falls $M$ eine echte Teilmenge von $N$ ist, ja.

> Gibt es da auch
> einfachere Beispiele?  

Siehe oben :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]