matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreHalbordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Halbordnung
Halbordnung < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:12 Mo 06.11.2006
Autor: krainer

Aufgabe
Es sei [mm] (M,\preceq) [/mm] eine halbgeornete Menge mit [mm]\left| M \right| \geq 2[/mm]. Beweisen oder widerlegen Sie die folgenden Behauptungen:
(i) Ist [mm]a \in M[/mm] gleichzeitig minimales und maximales Element, so ist [mm]a[/mm] mit keinem anderen Element vergleichbar.
(ii)Besitzt [mm]M[/mm] ein kleinstes Element, so beitzt [mm]M[/mm] nur endlich viele maximale Elemente.
(iii)...

Hi zusammen!
Ich beschäftige mich gerade mit Halbordnungen und mir fehlt noch das richtige Verständnis.
Genauergesagt verstehe ich in dem Zusammenhang nicht was "vergleichbar" bedeutet. Ich hab mir bei (i) folgendes überlegt, wenn [mm]a \in M[/mm] gleichzeitig minimales und maximales Element ist und [mm]\left| M \right| \geq 2[/mm], dann muss es ja mind. ein Element geben, dass die gleiche "Wertigkeit" hat wie a, aber ist dann noch die "Vergleichbarkeit" möglich!?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Halbordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:18 Mo 06.11.2006
Autor: mathiash

Hallo und guten Morgen,

[mm] (M,\leq) [/mm] ist ja Halbordnung gdw [mm] \leq [/mm] reflexiv und transitiv ist, nicht wahr.

Ein Element a [mm] \in [/mm] M heisst maximal gdw es kein [mm] b\in [/mm] M mit  [mm] b\neq [/mm] a und [mm] a\leq [/mm] b gibt.

Analog ist die Definition minimaler Elemente.

Also ist a maximal und minimal gdw es kein [mm] b\neq [/mm] a, [mm] b\in [/mm] M gibt mit   [mm] a\leq [/mm] b oder [mm] b\leq [/mm] a.

Zum zweiten Teil:

Betrachte [mm] M=\IN_0 [/mm] und [mm] \leq=\{(0,n)|n\in\IN\}\cup\{(n,n)|n\in \IN\}. [/mm]

Dann sollte doch [mm] (M,\leq) [/mm] eine Halbordnung sein, und alle [mm] n\in\IN_{\neq 0\} [/mm] sind maximal.

Gruss,

Mathias

Bezug
                
Bezug
Halbordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 Mo 06.11.2006
Autor: krainer

Hi Mathias!
Da lag ich mit meiner etwas wirren Vermutung bei (i) gar nicht so falsch. ;-)
Teil (ii) habe ich jetzt auch verstanden, und kann die restlichen Aufgaben sicherlich lösen!

Dankeschön für die Hilfe!

Gruß,
Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]