matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenHauptachsentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Hauptachsentransformation
Hauptachsentransformation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: rechenweg und tipps
Status: (Frage) beantwortet Status 
Datum: 17:25 Di 25.01.2011
Autor: i-love-mistakes

Aufgabe 1
Klassifizieren Sie folgende Kurve zweiten Grades mittels Hauptachsentransformation: [mm] 2x^2+4xy=12 [/mm]

Aufgabe 2
oder aber auch für:
[mm] 8x^2+12xy+17y^2-44x-58y-7=0 [/mm]

Hallo liebe Leser,

ich habe ein Problem mit einem Aufgabenblatt zum Thema Hauptachsentransformationen. Alle Aufgaben stellen die selbe Forderung nur mit unterschiedlichen Gleichungen. Mir ist das Prinzip der Hauptachsenformation nicht klar; bis jetzt hat mir die Recherche im Internet nur folgende Informationen eingebracht:
-> Eigenwerte aus Matrix A bestimmem
-> Eigenvektoren davon bestimmen
-> Transformationsmatrix aus Eigenvektoren aufstellen
-> T invers * AT Matrix berechnen

Da steh ich nun mit einer Matrix T^-1AT und weiß nicht was ich damit anfangen soll. Ich weiß nicht einmal ob ich hier den richtigen Weg gehe.
Wie funktioniert die Klassifizierung von quadratischen Gleichungen mittels der Hauptachsentransformation? Geht es darum etwas zu drehen oder nur darum eine Transformationsmatrix aufzustellen?

Herzlichen Dank für eure Antworten!

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 25.01.2011
Autor: MathePower

Hallo i-love-mistakes,


[willkommenmr]


> Klassifizieren Sie folgende Kurve zweiten Grades mittels
> Hauptachsentransformation: [mm]2x^2+4xy=12[/mm]
>  oder aber auch für:
> [mm]8x^2+12xy+17y^2-44x-58y-7=0[/mm]
>  Hallo liebe Leser,
>  
> ich habe ein Problem mit einem Aufgabenblatt zum Thema
> Hauptachsentransformationen. Alle Aufgaben stellen die
> selbe Forderung nur mit unterschiedlichen Gleichungen. Mir
> ist das Prinzip der Hauptachsenformation nicht klar; bis
> jetzt hat mir die Recherche im Internet nur folgende
> Informationen eingebracht:
>  -> Eigenwerte aus Matrix A bestimmem

> -> Eigenvektoren davon bestimmen
> -> Transformationsmatrix aus Eigenvektoren aufstellen
>  -> T invers * AT Matrix berechnen

>  
> Da steh ich nun mit einer Matrix T^-1AT und weiß nicht was
> ich damit anfangen soll. Ich weiß nicht einmal ob ich hier
> den richtigen Weg gehe.


Das ist der richtige Weg.

Nach den ersten 3 Schritten hast Du die Transformationsmatrix T zusammengebastelt:, dann kannst Du diese auch anwenden:

[mm]\pmat{x \\ y}=T\pmat{x' \\ y'}[/mm]

Dies setzt Du jetzt in die quadratische Gleichung ein.

Damit kannst Du dann, falls lineare Glieder vorhanden sind,
die Verschiebung berechnen.

Nach dem die Verschiebung berechnet worden ist,
kannst Du den Typ der Kurve zweiten Grades bestimmen.


>  Wie funktioniert die Klassifizierung von quadratischen
> Gleichungen mittels der Hauptachsentransformation? Geht es
> darum etwas zu drehen oder nur darum eine
> Transformationsmatrix aufzustellen?
>
> Herzlichen Dank für eure Antworten!
>  
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Hauptachsentransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:32 Mi 26.01.2011
Autor: i-love-mistakes

Dankeschön, das hat mir weitergeholfen!
Liebe Grüße.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]