Hauptraumzerlegung? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | $ A := [mm] \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 \\ -4 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0& -1 & 0 \\ 0 & 2 & -1 & -1 & 1 \end{pmatrix}$
[/mm]
Definiere für [mm] $\lambda$ [/mm] Eigenwert von A und für jedes $k [mm] \in \mathbb{N}$
[/mm]
[mm] $\text{Eig}(A, \lambda, [/mm] k) := [mm] \text{Ker}((A [/mm] - [mm] \lambda E_5)^k).$
[/mm]
Berechnen Sie für jeden Eigenwert [mm] $\lambda$ [/mm] von $A$ und für jedes $k [mm] \in \mathbb{N}$ [/mm] eine Basis [mm] $\mathcal{B}_{\text{Eig}(A,\lambda,k)}$ [/mm] von [mm] $\text{Eig}(A, \lambda,k)$ [/mm] mit der Eigenschaft:
[mm] $\forall k_1,k_2 \in \mathbb{N}$ [/mm] mit [mm] $k_1 \le k_2: \mathcal{B}_{\text{Eig}(A,\lambda,k_1)}$ [/mm] ist Teilfamilie von [mm] $\mathcal{B}_{\text{Eig}(A,\lambda,k_2)}$ [/mm] |
Hi
Ich habe erstmal die Eigenwerte berrechnet und es kommt raus:
[mm] $\lambda_1 [/mm] = 1$ mit Vielfachheit 2 und
[mm] $\lambda_2 [/mm] = -1$ mit Vielfachheit 3.
Für den Eigenwert [mm] $\lambda_1 [/mm] = 1$:
Was genau muss ich nun berrechnen, nach dem Lemma von Fittich gilt doch dass
$0 [mm] \le [/mm] ker(A - [mm] \lambda_1 E_5) \le [/mm] ker(A - [mm] \lambda_1 E_5)^2 [/mm] = ker(A - [mm] \lambda_1 E_5)^3 [/mm] = ...$
Die Basen könnte ich nun natürlich noch explizit ausrechnen und erhalte:
[mm] $\langle (0,0,0,0,1)^t \rangle$ [/mm] für k = 1
[mm] $\langle (0,0,0,0,1)^t, (0,0,1,0,0)^t\rangle$ [/mm] für k = 2
und die erste Basis ist ja nun Teilfamilie von der zweiten Basis, und für k > 2 sind die Basen immer gleich
Hab ich bei der Aufgabe was falsch verstanden oder passt das so?
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:20 Sa 13.06.2015 | Autor: | hippias |
Ich habe die Zahlen nicht ueberprueft, finde aber, dass das, was Du gemacht hast, sehr gut aussieht; die Aufgabe hast Du richtig verstanden. Das Lemma, auf das Du Dich berufst, ist aber hoechstwahrscheinlich nach Fitting benannt.
|
|
|
|