matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikHauptträgheitsachsen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Hauptträgheitsachsen
Hauptträgheitsachsen < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptträgheitsachsen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Di 17.04.2007
Autor: chillkroete

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ein Körper, z.B. ein Quader hat ja 3 Hauptträgheitsachsen. Warum verläuft die Rotation nur um die größte und kleinste Trägheitsachse stabil und um die mittlere Trägheitsachse labil?

        
Bezug
Hauptträgheitsachsen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Do 19.04.2007
Autor: leduart

Hallo kroete
Die Antwort erfordert schon ganz schön mitdenken,drum weiss sie vielleicht nichtmal dein Lehrer.
1. den Versuch kennst du hoffentlich nimm ein Buch, mach nen Gummi rum, damit es nicht beim Werfen aufgeht. Wirf es mit ner Drehung um die laengste Achse hoch, um die kürzeste und um die mittlere. bei der mittleren fängt es immer an zu :taumeln.
Jetzt zum Beweis: [mm] I_3 Energie [mm] :$2*W=I_1*w_1^2+I_2*w_2^2+I_3*w_3^2$ [/mm]
Quadrat des Drehimpulses [mm] $D^2=I_1^2*w_1^2+I_2^2*w_2^2+I_3^2*w_3^2$ [/mm]
es gilt der Erhaltungssatz der Energie und des Drehimpulses, also bleibt auch [mm] D^2-I_1*2E [/mm] erhalten.
[mm] $D^2-I_1*2E=w_2^2(I_2^2-I_1*I_2)+w_3^2*(I_3^2-I_1*I_3)$ [/mm]
das ist 0 für [mm] w_3=w_2=0 [/mm] also Drehung um die Hauptachse.
beide Klammern sind negativ, weil [mm] I_1>i_2,I_3. [/mm] also ist der Ausdruck immer [mm] \le [/mm] 0
Wenn sich die Konstante [mm] D^2-I_1*2E [/mm] durch äussere Einwirkung etwas ändert, ist sie also klein negativ, da beide Klammern dasselbe Vorzeichen haben, muss [mm] w_2^2 [/mm] und [mm] w_3^2 [/mm] klein bleiben!
Dasselbe passiert bei :
[mm] $D^2-I_3*2E=(w_1^2*(I_1^2-I_1*I_3)+w_^2(*I_2^2-I_3*I_2))$ [/mm]
nur jetzt sind beide Klammern positiv, der Ausdruck also [mm] \ge0 [/mm]
wenn sich der Ausdruck etwas ändert muss wieder [mm] w_1^2 [/mm] und [mm] w_2^2 [/mm] klein bleiben.
Anders [mm] bei$D^2-I_2*2E=w_^1(I_1^2-I_1*I_2)+w_3^2*(I_3^2-I_1*I_3)$ [/mm]
jetz ist die erste Klammer positiv, die zweite negativ!
d.h. schon wenn der Ausdruck 0 ist d.h. für Drehung nur um [mm] I_2-Achse [/mm] gibt es Lösungen mit demselben Erhaltungssatz, in denen [mm] w_1 [/mm] und [mm] w_2 [/mm] nicht 0 ist. d.h. Energie und drehimpuls bleiben erhalten, wenn sich [mm] w_1 [/mm] und [mm] w_2 [/mm] ändern! d.h. es hat keinen Grund stabil zu sein, währtend die 2 anderen sich nur ändern können wenn sich an Energie und  -oder- drehimpuls was ändert.
Ich find das für die Schule reichlich schwer, aber vielleicht kapierst dus ja ungefähr! wenn du Fragen dazu hast schreib sie.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]