matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelHerleitung: Formel Abstand P-G
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Längen, Abstände, Winkel" - Herleitung: Formel Abstand P-G
Herleitung: Formel Abstand P-G < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung: Formel Abstand P-G: Herleitung
Status: (Frage) überfällig Status 
Datum: 23:01 Di 13.11.2007
Autor: StralsunderJung

Grüße euch herzlichst, liebe Matheraum-Gemeinde!

Ich habe mich für einen Vortrag bezüglich des Themas "Abstand Punkt - Gerade" gemeldet und soll meinen Mitschülern nun vermitteln, wieso die Formel eben genauso aussieht und nich' anders... Doch dummerweise is' mein Mathebuch ("LS Analytische Geometrie Leistungskurs" Klasse 13 vom Klett Verlag, S. 147) mir dabei keine große Hilfe...

Denn dort steht nur unter Methode 2:

"In Fig. 147.2 ist [mm] \overline{PF} [/mm] = [mm] \left| \vec r - \vec p \right| [/mm] * cos [mm] \varphi [/mm] =  [mm] \left| \left( \vec r - \vec p \right) * \vec u0 \right| [/mm]  , wobei  [mm] \vec [/mm] u0 ein Richtungsvektor von g vom Betrag 1 ist.
Nach dem Satz des Pythagoras gilt also

d = [mm] \wurzel{\left( \vec r - \vec p \right)^2 - \left( \left( \vec r - \vec p \right) * \vec u0 \right) }" [/mm]

Bemerkung: Die kleinen Mal-Punkte sollen dabei das Skalarprodukt darstellen!


Leider bringt mir dieser Lehrbuchtext gar nichts für meinen Vortrag...
Ich weiß, dass ich hier keine eigenen Lösungsansätze miteinbringe, aber glaubt mir, ich sehe wirklich gar nicht durch - das ist totales Neuland für mich.
Meine einzigen Lösungsideen bisher sind, dass  [mm] \vec [/mm] r - [mm] \vec [/mm] p wohl die Hypotenuse für das rechtwinklige Dreieck PFR (P als Punkt der Geraden, F als Lotfußpunkt sowie R als gegebener Punkt ausserhalb der Geraden) darstellt und d daher die Ankathete sein müsste, damit man mit dem Satz von Pythagoras was anstellen kann... Darauf bezieht sich die Formel ja schließlich, oder? Das habe ich jedenfalls als Tipp bekommen von meinem Kursleiter...

Ich hoffe, dass sich jemand meiner erbarmt und mir hilft? Habe im I-Net auch nichts gefunden, was einer Herleitung genau dieser Formel auch nur annähernd entspricht.


Liebste Grüße aus dem Norden,
Sebastian


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Herleitung: Formel Abstand P-G: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Di 13.11.2007
Autor: leduart

Hallo
Sieh doch mal in unserer Mathebank nach, vielleicht verstehst du es dann!
klick hier
sonst poste oder beschreibe das Bild in deinem Buch, (was ist F, was [mm] \alpha) [/mm]
Gruss leduart

Bezug
        
Bezug
Herleitung: Formel Abstand P-G: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:23 Do 15.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]