matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenHerleitung der eulerschen Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Herleitung der eulerschen Zahl
Herleitung der eulerschen Zahl < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung der eulerschen Zahl: Probleme bei der Herleitung
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 02.12.2006
Autor: vonDutch

Aufgabe
-

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Ich bin neu in der Community und hoffe wir haben eine gute Zeit gemeinsam :-)

Nun zu meinem Problem:
Also ich soll die eulersche Zahl e einführen und mein Lehrer hat mir gesagt, ich soll den Weg über das standart beispiel mit der verzinsung wählen
und anschliessend mithilfe des "satzes über die konvergenz monotoner und beschränkter folgen" und danach mit bernouli beweisen.

Er hat mir eine Kopie gegeben, wo dies relativ ausfühlich dargestellt ist, aber leider kapiere ich einfach nicht wie man diesen beweis genau durchfüht und wie man dies ausrechnet.

Ich komme bis zum punkt:

[mm] \bruch{e_{n+1}}{e_{n}} [/mm] = ... = [mm] \bruch{(1+\bruch{1}{n+1})^{n+1} *(1+\bruch{1}{n})}{(1+\bruch{1}{n+1})^{n+1}} [/mm]

Dann macht er im Buch:
=
[mm] (\bruch{(n+2)*n}{(n+1)^{2}})^{n+1} [/mm] * [mm] (1+\bruch{1}{n}) [/mm]

Ich weiss nicht wie er auf diesen wert kommt und der rest is mir auch schwer nachvollziehbar




Kann mir das jemand schritt für schritt erklären, wie man bei [mm] E=(1+(1/n))^n [/mm]
ist das beweisen kann mit diesem satz, oder vllt einen link posten

ich hab wirklich nichts gutes zu diesem them gefunden!


Ach ja falls es hilft mein Problem nachzuvollziehen:
Er hat mir eine Kopie gegeben, die so aussieht als ob sie aus einem lambacher schweizer buch kopiert worden ist. Die eulersche zahl wir auf s. 90 eingeführt
Aber es ist KEINES von diesen büchern:
LS Analysis
LS Analytische Geometrie mit linearer Algebra
LS Kursstufe

Ich wäre wirklich dankbar, wenn mir jemand helfen könnte!!!
mfg
alex

        
Bezug
Herleitung der eulerschen Zahl: Links
Status: (Antwort) fertig Status 
Datum: 15:26 Sa 02.12.2006
Autor: miomi

[]http://de.wikipedia.org/wiki/Eulersche_Zahl

[]http://www.mathe.braunling.de/E.htm

[]http://www.mathe-cd.de/4_Funktionen/45_Expo/45010%20Expo%20Grund%201%20SOD.pdf

Gruß Miomi

Bezug
                
Bezug
Herleitung der eulerschen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Sa 02.12.2006
Autor: vonDutch

danke, aber auf den seiten wird doch nicht dieser weg gewählt über die folgen!

Bezug
                        
Bezug
Herleitung der eulerschen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Sa 02.12.2006
Autor: miomi

Hallo,

dann lies Dir einmal bitte Seite 3 und 4 des 3. Links durch.

Für einen Kurzvortrag ist das wohl sehr gut geeignet.

Es gibt da ein Buch von eli maor "Die Zahl e, Geschichte und Geschichten", kannst Die bestimmt in der Bibliothek ausleihen.

oder gehe noch mal auf den Linke
[]http://matheraetsel.de/texte/DIPLOM_E.PDF

Gruß Miomi

Bezug
                                
Bezug
Herleitung der eulerschen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 02.12.2006
Autor: vonDutch

ich verstehe nicht ganz, wie er auf die form [mm] e^{x}>x+1 [/mm] kommt
(beim 3.link)



kann mir niemand sagen, wie man von
[mm] \bruch{e_{n+1}}{e_{n}} [/mm] = ... = [mm] \bruch{(1+\bruch{1}{n+1})^{n+1} *(1+\bruch{1}{n})}{(1+\bruch{1}{n+1})^{n+1}} [/mm]

zu

=
[mm] (\bruch{(n+2)*n}{(n+1)^{2}})^{n+1} [/mm] * [mm] (1+\bruch{1}{n}) [/mm]

kommt

Bezug
                                        
Bezug
Herleitung der eulerschen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Sa 02.12.2006
Autor: Marc

Hallo,

> ich verstehe nicht ganz, wie er auf die form [mm]e^{x}>x+1[/mm]
> kommt
>  (beim 3.link)

Habe ich mich nicht beschäftigt.

> kann mir niemand sagen, wie man von
>  [mm]\bruch{e_{n+1}}{e_{n}}[/mm] = ... =
> [mm]\bruch{(1+\bruch{1}{n+1})^{n+1} *(1+\bruch{1}{n})}{(1+\bruch{1}{n+1})^{n+1}}[/mm]

Der Term müsste lauten
[mm]\bruch{(1+\bruch{1}{n+1})^{n+1} *(1+\bruch{1}{n})}{(1+\bruch{1}{\red{n}})^{n+1}}[/mm]

Dann erhält man:

[mm]=\bruch{\left(\bruch{n+2}{n+1}\right)^{n+1} *\left(1+\bruch{1}{n}\right)}{\left(\bruch{n+1}{n}\right)^{n+1}}[/mm]

[mm]=\left(\bruch{n+2}{n+1}\right)^{n+1} *\left(\bruch{n}{n+1}\right)^{n+1}*\left(1+\bruch{1}{n}\right)[/mm]

[mm]=\left(\bruch{n+2}{n+1}*\bruch{n}{n+1}\right)^{n+1}*\left(1+\bruch{1}{n}\right)[/mm]

> zu
>
> =
>  [mm](\bruch{(n+2)*n}{(n+1)^{2}})^{n+1}[/mm] * [mm](1+\bruch{1}{n})[/mm]
>
> kommt

Alles klar? :-)

Viele Grüße,
Marc

Bezug
                                                
Bezug
Herleitung der eulerschen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Sa 02.12.2006
Autor: vonDutch

ok wunderbar dankeschön!

[mm](\bruch{(n+2)*n}{(n+1)^{2}})^{n+1}[/mm] * [mm](1+\bruch{1}{n})[/mm]
aber wie kommt man dann von dieser form auf

[mm] (1-\bruch{1}{(n+1)^{2}})*\bruch{n+1}{n} [/mm]

Bezug
                                                        
Bezug
Herleitung der eulerschen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Sa 02.12.2006
Autor: Marc

Hallo,

> [mm](\bruch{(n+2)*n}{(n+1)^{2}})^{n+1}[/mm] * [mm](1+\bruch{1}{n})[/mm]
> aber wie kommt man dann von dieser form auf
>
> [mm](1-\bruch{1}{(n+1)^{2}})*\bruch{n+1}{n}[/mm]  

Es ist ja $(n+2)*n = [mm] n^2+2n [/mm] = [mm] n^2+2n+1-1 [/mm] = [mm] (n+1)^2-1$, [/mm] weswegen man kürzen kann:

[mm] $\bruch{(n+2)*n}{(n+1)^{2}}=\bruch{(n+1)^2-1}{(n+1)^{2}}=\bruch{(n+1)^2}{(n+1)^{2}}-\bruch{1}{(n+1)^{2}}=1-\bruch{1}{(n+1)^2}$ [/mm]

Viele Grüße,
Marc

Bezug
                                                                
Bezug
Herleitung der eulerschen Zahl: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:49 So 03.12.2006
Autor: vonDutch

ok danke das wäre soweir geklärt!!
Aber ich hänge schon am nächsten Problem
Ich setze ja den Term
[mm] (1-\bruch{1}{(n+1)^{2}})*\bruch{n+1}{n} [/mm]
In die Ungleichung von Bernoulli ein
die ja lautet
[mm] (1+x)^{n}\ge [/mm] 1+nx
?
um dann schlieslich zu beweisen, dass [mm] e_{n} [/mm] eben monoton steigend ist (wenn da 1 rauskommt)
Eingesetzt sieht das ganze so aus:
[mm] (1-\bruch{1}{(n+1)^{2}})^{n+1} [/mm] > [mm] 1-\bruch{n+1}{(n+1)^{2}} [/mm]
wie soll ich dann weitermachen?


!! EDIT: OK ES HAT SICH ERLEDIGT, HABS SELBER HINGEKRIEGT !!

Nun aber frage ich mich, wie ich die beschränktheit beweisen kann, im buch führt er die gleiche funktion mit n+1 ein und beweist, dass diese monton fallend ist.
aber wieso?
und rauskommt,dass die obere grenze 4 ist, wieso denn dass? ich hab gedacht der grenzwert ist eben diese eulersche zahl

Bezug
                                                                        
Bezug
Herleitung der eulerschen Zahl: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 05.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]