matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperHerleitung des kgV aus dem ggT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Herleitung des kgV aus dem ggT
Herleitung des kgV aus dem ggT < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung des kgV aus dem ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Mo 16.04.2012
Autor: DrZee

Aufgabe
Sei [mm]R[/mm] ein euklidischer Integritätsbereich mit [mm]a, b \in R[/mm] und [mm]a, b \neq 0[/mm].
Zeigen Sie, dass für [mm]k = \frac{ab}{ggT(a,b)}[/mm] gilt:
(1) [mm]a \vert k[/mm] und [mm]b \vert k[/mm]
(2) Für alle [mm]c \in R[/mm] gilt: [mm]a \vert c[/mm] und [mm]b \vert c \Rightarrow k \vert c[/mm].

Tipp: [mm]k[/mm] ist das [mm]kgV[/mm] von [mm]a[/mm] und [mm]b[/mm].

Ich finde keinen Ansatz, wie ich die Aufgabe lösen soll.
Aus der Definition von [mm]k[/mm] folgt ja, dass [mm]ggT(a,b) \vert ab[/mm] gilt. Außerdem folgt aus der Definition des [mm]ggT[/mm] natürlich, dass [mm]a[/mm] und [mm]b[/mm] von [mm]ggT(a,b)[/mm] geteilt werden, aber nützt mir das, um zu zeigen, dass auch [mm]a \vert k[/mm] gilt?

Es wäre super, wenn mir da jemand etwas Starthilfe geben könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Herleitung des kgV aus dem ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Mo 16.04.2012
Autor: hippias

Nach Definition gilt fuer [mm] $x,y\in [/mm] R$, dass [mm] $x\vert y\iff \exist d\in R\: [/mm] y= dx$. Wenn Du nun $b= dggT(a,b)$ schreibst, muesste sich ein $d'$ fuer $k$ und $a$ finden lassen, dass die Definitionsbedingung erfuellt.

Bezug
                
Bezug
Herleitung des kgV aus dem ggT: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:14 Mo 16.04.2012
Autor: DrZee

Danke für deine Antwort, aber leider verstehe ich nicht ganz, was du meinst.
Die Definition der Teilbarkeit ist klar, also kann ich z.B. das hier schreiben:

Es exist. ein d mit [mm]a = ggT(a,b) \cdot d[/mm]
und
Es exist. ein e mit [mm]b = ggT(a,b) \cdot e[/mm]
und
Es exist. ein f mit [mm]ab = ggT(a,b) \cdot f[/mm]

Aber was kann ich jetzt damit anstellen? Ich habe mal die 1. und 2. Gleichung in die 3. eingesetzt, aber dann habe ich ja immer noch d, e und f als Unbekannte.

Bezug
                        
Bezug
Herleitung des kgV aus dem ggT: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 18.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]