Herleitung lineare Abbildung < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein Tisch (Gewicht [mm] $G_T$, [/mm] Abmaße $a = [mm] 1{,}2\,\mathrm [/mm] m, b = [mm] 0{,}8\,\mathrm [/mm] m$) wird durch eine Kugel (Gewicht [mm] $G_1$) [/mm] an unbekannter Stelle auf dem Tisch belastet. Dabei werden in den Tischbeinen die Stützkräfte [mm] $F_1 [/mm] = [mm] 40\,\mathrm [/mm] N, [mm] F_2 [/mm] = [mm] 80\,\mathrm [/mm] N, [mm] F_3 [/mm] = [mm] 110\,\mathrm [/mm] N, [mm] F_4 [/mm] = [mm] 70\,\mathrm [/mm] N$ gemessen. Durch Auflegen einer zweiten Kugel mit halbem Gewicht erhöhen sich die Tischbeinkräfte auf [mm] $\overline F_1 [/mm] = [mm] 60\,\mathrm [/mm] N, [mm] \overline F_2 [/mm] = [mm] 90\,\mathrm [/mm] N, [mm] \overline F_3 [/mm] = [mm] 120\,\mathrm [/mm] N, [mm] \overline F_4 [/mm] = [mm] 90\,\mathrm N$.\\
[/mm]
Bestimmen Sie das Gewicht des Tisches und der Kugeln. An welchen Stellen liegen die beiden Kugeln auf? Warum kann die Problemstellung nicht umgekehrt werden, d.h. die Tischbeinkräfte aus den Gewichtskräften berechnet werden?
Skizze: Länge $a$ läuft entlang der $x$-Achse, Breite $b$ entlang der $y$-Achse. Die Tischbeine sind gegen den Uhrzeigersinn durchnummeriert. Der Ursprung liegt bei [mm] $(^a/_2|^b/_2)$ [/mm] auf der Tischoberfläche, sodass die Koordinaten die Abweichung von der Tischmitte angeben. Das erste Tischbein liegt im dritten Quadranten.
[Dateianhang nicht öffentlich] |
Die Gewichtskräfte der Kugeln habe ich bereits mittels Gleichungssystem bestimmt: [mm] $G_T [/mm] = [mm] 180\,\mathrm [/mm] N, [mm] G_1 [/mm] = [mm] 120\,\mathrm [/mm] N$. Um die zweite Frage zu beantworten, stelle ich für jede Dimension nun eine lineare Funktion auf, die dann auf ein $x [mm] \le [/mm] |0{,}6|$ beziehungsweise $y [mm] \le [/mm] |0{,}4|$ abbilden. Beide verlaufen durch den Ursprung $O$. Wie komme ich nun auf den jeweils zweiten Punkt? Welche Argumente sollte die Abbildung bekommen?
Kleingedrucktes:
- Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
- Mit Suchmaschine/Forensuche war ich soweit erfolglos.
Dateianhänge: Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
|
|
|
|
Hallo!
irgendwie ist es sehr schwer, dir zu folgen. Kannst du mal etwas näher darauf eingehen, was du gemacht hast, und evtl mal deine Gleichungen zeigen?
Im Prinzip kannst du eine lin. Gleichung angeben, die dir abhängig von der x-Position der Kugel die Kraft auf die Beine 1&3 liefert. Auf die Beine 2&4 wirkt dementsprechend die Differenz zur Gesamtgewichtskraft. Aber da du die Kraft auf 2&4 kennst, kannst du x berechnen. Gleiches gilt dann auch in y-Richtung.
Von der zweiten Kugel weißt du ja auch, welche Kraft sie auf welches Bein ausübt, daher kannst du auch ihre Position berechnen.
Allerdings ist mir nicht klar, was mit der Frage gemeint ist, daß die Problemstellung nicht umgekehrt werden könne.
|
|
|
|