matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeHerleitung von FUnktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Herleitung von FUnktion
Herleitung von FUnktion < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung von FUnktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Mo 20.02.2006
Autor: chris2002002

Aufgabe
Uns wurde ein Graph gegeben und wir sollten die dazugehörige Funktion bestimmen. Als Lösung waren a=4, b=-4 und c=1 angegeben.
[Dateianhang nicht öffentlich]

Die lösungfunktion müsste also so aussehen: [mm] f(x)=ax^4+ax^2+c [/mm]

man kann der zeichnung entnehmen, dass eine achsensymmetrie vorliegt und der graph durch die punkte A(-1/1) und B(1/1) verläuft. der punkt E(0/1) ist ein extrempunkt. außerdem liegen noch 2weitere extrempunkte die als y-wert 0 haben, der x-wert ist jedoch unbekannt, liegt aber jedoch zwischen -1 und 1.

für die matrix hab ich nun a+b+c=1 2mal verwendet für die punkte A und B und für E c=1. also lösung erhalte ich nun aber immer nur a=-t ; b=t  und c=1. also lösung wurde jedoch für a=4 ; b=-4 und c=1 vorgegeben. könnt ihr mir vielleicht weiterhelfen? finde den fehler leider nicht...


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Herleitung von FUnktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Mo 20.02.2006
Autor: nitro1185

Hallo.

Du hast vollkommen recht und keinen fehler.c=1 und a=-b,jedoch fehlt uns 1 Bedingung.

Man kann sicher keinen anderen Extrempunkt oder Wendepunkt mit freiem Auge erkennen.

Bist du dir sicher dass das alles ist??Ist viell. nicht noch eine Fläche angegeben??mfg daniel

Bezug
                
Bezug
Herleitung von FUnktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 Mo 20.02.2006
Autor: chris2002002

nein, es ist nichts weiteres angegeben... als nächstes sollten wir koordinaten der extrem- und wendepunkte berechnen und dann den flächeninhalt der grauenfläche bestimmen. werd meinen lehrer morgen mal darauf ansprechen. trotzdem danke!

Bezug
        
Bezug
Herleitung von FUnktion: Noch nicht alles verwertet...
Status: (Antwort) fertig Status 
Datum: 07:49 Di 21.02.2006
Autor: statler

Guten Morgen Chris,

du hast bisher noch nicht ausgenutzt, daß der y-Wert an den beiden anderen Extremstellen = 0 ist. Dazu mußt du erst den x-Wert (einer reicht wg. der Achsensymmetrie) bestimmen über die 1. Ableitung, die 3 Nullstellen hat, und dann den zugehörigen y-Wert = 0 setzen. Das ergibt a = 4.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Herleitung von FUnktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Di 21.02.2006
Autor: chris2002002

danke für den tipp, nur komm ich einfach nicht auf die a=4. als nullstellen der ersten ableitung bekomme ich 0, - [mm] \wurzel{2/3} [/mm] und  [mm] \wurzel{2/3} [/mm] heraus. das kommt ja glaube ich auch so halbwegs hin, nur wie binde ich das jetzt genau in die matrix mit ein um die einzelnen koeffizienten zu bestimmen?
wenn ich das jetzt zb [mm] \wurzel{2/3} [/mm] in f(x) = [mm] ax^4+bx^2+c [/mm] = 0 einsetze und dann noch die beiden gleichungen c=1 und a+b+c=1 verwende dann komm ich da jedenfalls nicht drauf...

Gruß, chris

Bezug
                        
Bezug
Herleitung von FUnktion: Also,...
Status: (Antwort) fertig Status 
Datum: 14:58 Di 21.02.2006
Autor: statler

...Chris, die 1. Abl. ist doch hoffentlich
[mm] 4ax^{3} [/mm] + 2bx,
und dann ist weiter für die Minima
[mm] (x_{2/3})^{2} [/mm] = [mm] -\bruch{b}{2a}. [/mm]
Mir fällt gerade auf, daß a [mm] \not= [/mm] 0 sein sollte.
Außerdem ist b = -a nach deiner eigenen Rechnung.  
Was ergibt sich dann an den Minima für den y-Wert:
[mm] \bruch{a}{4} [/mm] -  [mm] \bruch{a}{2} [/mm] + 1
und das soll = 0 sein!
Der Rest ist deine Sache.

Noch ein Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]