matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenBauingenieurwesenHerleitungsfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Bauingenieurwesen" - Herleitungsfrage
Herleitungsfrage < Bauingenieurwesen < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitungsfrage: Tipp,Idee
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:49 Do 12.03.2009
Autor: Intelinside

Aufgabe
HI ich habe ein Problem ich kann den Schritt nicht nachvollziehn ,vieleicht kann mir jemand nen Tipp oder eine Anregung geben was hier passiert ist.

An einen Balken im Schnitt tritt Spannung auf.Diese wird in zwei Komponeten :Normalspannung(N) und Schubspannung(T) zerlegt.Der Schnitt erfolgt nicht senkrecht zur Fläche sondern wird wird um den Winkel [mm] \gamma [/mm] gedrehte Richtung geführt.Ich werde nur den Teil der Aufgabe schildern der mir Probleme bereitet.

Summe aller Kräfte in x-Richtung:
[mm] N+T*tan(\gamma)*\bruch{F}{A} [/mm] = [mm] \bruch{F}{A} [/mm]

Summe aller Kräfte in y-Richtung:
[mm] N*tan(\gamma)-T=0 [/mm]

daraus folgt :nach N und T aufgelöst:
wie kommt man darauf?
1.)
[mm] N=\bruch{1}{1+tan^{2}(\gamma)}*\bruch{F}{A} [/mm]

[mm] T=\bruch{tan(\gamma)}{1+tan^{2}(\gamma)}*\bruch{F}{A} [/mm]
[/red]
Mit den trigonmetrische Umgeformungen:
2.)
[mm] cos^{2}(\gamma)= \bruch{1}{1+tan^{2}} [/mm]

[mm] cos^{2}(\gamma)=0.5(1+cos2\gamma) [/mm]

[mm] sin(\gamma)cos(\gamma)= [/mm] 0.5 sin [mm] 2*\gamma [/mm]

und der Abkürzung [mm] N_{0} [/mm] =F/A (=Normalspannung in einem Schnitt senkrecht zur Stabachse)ergibt schließlich :

[mm] N=\bruch{N_{0}}{2}*(1+cos2\gamma [/mm] )

[mm] T=\bruch{N_{0}}{2}*sin2\gamma [/mm]

ich verstehe alle Zwischeschritte nicht bitte gebt mir einen Tip .
Warum bei 1. nicht so umgeformt
[mm] N=\bruch{F}{A}-T*tan\gamma? [/mm]

        
Bezug
Herleitungsfrage: ausklammern
Status: (Antwort) fertig Status 
Datum: 18:20 Do 12.03.2009
Autor: Loddar

Hallo Intelinside!


Du musst hier schon korrekt umformen und ausklammern:

[mm] $$N+T*\tan(\gamma)*\bruch{F}{A} [/mm] \ = \ [mm] \bruch{F}{A}$$ [/mm]
$$N \ = \ [mm] \bruch{F}{A}-T*\tan(\gamma)*\bruch{F}{A} [/mm] \ = \ [mm] \bruch{F}{A}*\left[1-T*\tan(\gamma)\right]$$ [/mm]

Dies kannst Du nun in die andere Gleichung (Summe in y-Richtung) einsetzen und nach $T \ = \ ...$ umstellen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]