Hesse-Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:15 Do 22.06.2006 | Autor: | Sandy857 |
Aufgabe | Sei A [mm] \subset \IR^n [/mm] offen, und sei [mm] f:A\to \IR [/mm] harmonisch. Warum kann die Hesse-Matrix von f in keinem kritischen Punkt [mm] x_{0} \in [/mm] a definit(positiv oder negativ) sein? |
Ich habe diese Frage in keinem anderen Forum gestellt. Wenn f(x) harmonisch ist dann gilt: [mm] \Delta [/mm] f(x)=0 Daraus folgt, dass die Spur der Hesse-Matrix gleich Null sein muss. Aber wie muss ich jetzt weiter vorgehen? Danke für eure Mühe und Hilfe Sandy
|
|
|
|
Hallo Sandy,
> Sei A [mm]\subset \IR^n[/mm] offen, und sei [mm]f:A\to \IR[/mm] harmonisch.
> Warum kann die Hesse-Matrix von f in keinem kritischen
> Punkt [mm]x_{0} \in[/mm] a definit(positiv oder negativ) sein?
> Ich habe diese Frage in keinem anderen Forum gestellt.
> Wenn f(x) harmonisch ist dann gilt: [mm]\Delta[/mm] f(x)=0 Daraus
> folgt, dass die Spur der Hesse-Matrix gleich Null sein
> muss. Aber wie muss ich jetzt weiter vorgehen? Danke für
> eure Mühe und Hilfe Sandy
Du musst nur noch einen schritt weiterdenken. die spur der hessematrix ist gleich 0. angenommen sie sei (obdA) positiv definit. dann sind alle eigenwerte positiv, also ist die spur .....??
Was mich allerdings bei dieser argumentation etwas wundert, ist dass eine voraussetzung (--> 'in keinem kritischen punkt') nicht eingeht....
Gruß
Matthias
|
|
|
|