matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesHesseform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Hesseform
Hesseform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hesseform: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 12:48 Mi 26.12.2012
Autor: DrRiese

Aufgabe
Sei [mm] E=\vec{u}+\IR\vec{v}+\IR\vec{w}. [/mm]
[mm] \vec{u}*\vec{n} \ge [/mm] 0 oder [mm] \vec{u}*\vec{-n} \ge [/mm] 0. Wähle [mm] \vec{u} [/mm] = [mm] \pm \bruch{\vec{v}\times\vec{w}}{|\vec{v}\times \vec{w}|}, [/mm] dass  [mm] \vec{u}*\vec{n} [/mm] = d [mm] \ge [/mm] 0, dann heißt die Beschreibung E = { [mm] \vec{x} [/mm] | [mm] \vec{x}*\vec{n}=d [/mm] } die Hesseform von E. Dabei ist d der Abstand von E zum Ursprung.

Hallo,
gehe grad die Vorlesungsunterlagen durch und bin auf ein Verständnisproblem gestoßen. Die Hesseform ist mir leider nicht wirklich verständlich. Was ich bis jetzt weiss ist, dass die Hesseform aus Umformungen aus der Normalenform einer Ebene entstanden ist, also
E = [mm] (\vec{x} [/mm] - [mm] \vec{u})*\vec{n} [/mm] = 0 [mm] \Rightarrow \vec{x}*\vec{n} [/mm] - [mm] \vec{u}*\vec{n} [/mm] = 0 [mm] \Rightarrow \vec{x}*\vec{n} [/mm] = [mm] \vec{u}*\vec{n} [/mm] und da d:= [mm] \vec{u}*\vec{n} \Rightarrow \vec{x}*\vec{n} [/mm] = d.
Aber wieso soll d der Abstand von der Ebene zum Ursprung sein? Und wieso kann eine Ebene damit definiert werden, da doch jeder Punkt der Ebene einen anderen Abstand zum Ursprung hat?

Freue mich über Rückmeldungen :-)

LG und frohe Weihnachten,
DrRiese

        
Bezug
Hesseform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Mi 26.12.2012
Autor: Diophant

Hallo,

> Hallo,
> gehe grad die Vorlesungsunterlagen durch und bin auf ein
> Verständnisproblem gestoßen. Die Hesseform ist mir leider
> nicht wirklich verständlich. Was ich bis jetzt weiss ist,
> dass die Hesseform aus Umformungen aus der Normalenform
> einer Ebene entstanden ist, also
> E = [mm](\vec{x}[/mm] - [mm]\vec{u})*\vec{n}[/mm] = 0 [mm]\Rightarrow \vec{x}*\vec{n}[/mm]
> - [mm]\vec{u}*\vec{n}[/mm] = 0 [mm]\Rightarrow \vec{x}*\vec{n}[/mm] =
> [mm]\vec{u}*\vec{n}[/mm] und da d:= [mm]\vec{u}*\vec{n} \Rightarrow \vec{x}*\vec{n}[/mm]
> = d.

Ja, aber du musst beachten, dass bei der Hesseschen Normalenform der Normalenvektor normiert ist, d.h., er hat Einheitslänge.

> Aber wieso soll d der Abstand von der Ebene zum Ursprung
> sein? Und wieso kann eine Ebene damit definiert werden, da
> doch jeder Punkt der Ebene einen anderen Abstand zum
> Ursprung hat?
>

Nun, beachte mal das mit der Einheitslänge. Der Abstand zu einem beliebigen Punkt wird ja in Richtung des Normalenvektors gemessen. Wenn man jetzt noch die Definition des Skalarprodukts

[mm] \vec{a}*\vec{b}=|\vec{a}|*|\vec{b}|*cos\phi [/mm]

berücksichtigt, sollte der Sachverhalt klar sein.

Auch von mir schöne Weihnachten,

Diophant

Bezug
                
Bezug
Hesseform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Mi 26.12.2012
Autor: DrRiese

Tut mir leid, aber so richtig klar ist mir das leider immer noch nicht :-)

LG,
DrRiese

Bezug
                        
Bezug
Hesseform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 26.12.2012
Autor: Diophant

Hallo,

sei [mm] F_0 [/mm] der Lotfußpunkt bzgl. des Koordinatenursprungs auf der Ebene. Zeichne mal das Dreieck 0F_0X, wobei X ein belibiger Punkt auf E sei. Damit sollte es klarer werden.


Gruß, Diophant

Bezug
                                
Bezug
Hesseform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 27.12.2012
Autor: DrRiese

Ok, also ich glaube jetzt etwas verstanden zu haben:

Der Abstand einer Ebene A zu einem Punkt [mm] \vec{b} [/mm] ist ja definiert durch [mm] d(\vec{b}, [/mm] A) = inf{ [mm] \vec{x} \in [/mm] A | [mm] d(\vec{b},\vec{x}) [/mm] }, d.h. die kürzeste Distanz eines Punktes zu einer Ebene ist der definierte Abstand, also die orthogonale Projektion von [mm] \vec{b} [/mm] auf A.

Bei der Hesseform:
Sei [mm] \vec{u} [/mm] der Lotfußpunkt bezgl. des Koordinatenursprungs auf die Ebene.
Somit
[mm] \vec{u} [/mm] * [mm] \vec{n} [/mm] = [mm] |\vec{u}| [/mm] * [mm] |\vec{n}| [/mm] * cos [mm] \gamma [/mm]

Also [mm] |\vec{u}| [/mm] * 1 * cos 0° (bzw. cos 180°) = [mm] |\vec{u}| [/mm] , dies ist aber der Abstand zum Ursprung, also d.

Da alle [mm] \vec{x} [/mm] dieser Ebene gem. Definition denselben Abstand zu einem Punkt, hier zum Ursprung besitzen, kann die Ebene somit auch in dieser Form definiert werden.

Ich hoffe, dass dies jetzt richtig war :-)

LG
DrRiese

Bezug
                                        
Bezug
Hesseform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Do 27.12.2012
Autor: Diophant

Hallo,

> Ok, also ich glaube jetzt etwas verstanden zu haben:
>
> Der Abstand einer Ebene A zu einem Punkt [mm]\vec{b}[/mm] ist ja
> definiert durch [mm]d(\vec{b},[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

A) = inf{ [mm]\vec{x} \in[/mm] A |

> [mm]d(\vec{b},\vec{x})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}, d.h. die kürzeste Distanz eines

> Punktes zu einer Ebene ist der definierte Abstand, also die
> orthogonale Projektion von [mm]\vec{b}[/mm] auf A.
>
> Bei der Hesseform:
> Sei [mm]\vec{u}[/mm] der Lotfußpunkt bezgl. des
> Koordinatenursprungs auf die Ebene.
> Somit
> [mm]\vec{u}[/mm] * [mm]\vec{n}[/mm] = [mm]|\vec{u}|[/mm] * [mm]|\vec{n}|[/mm] * cos [mm]\gamma[/mm]
>
> Also [mm]|\vec{u}|[/mm] * 1 * cos 0° (bzw. cos 180°) = [mm]|\vec{u}|[/mm] ,
> dies ist aber der Abstand zum Ursprung, also d.
>
> Da alle [mm]\vec{x}[/mm] dieser Ebene gem. Definition denselben
> Abstand zu einem Punkt, hier zum Ursprung besitzen, kann
> die Ebene somit auch in dieser Form definiert werden.
>
> Ich hoffe, dass dies jetzt richtig war :-)

Nein, es ist völlig falsch: was du beschreibst, ist keine Ebene, sondern eine Kugel um den Ursprung.

Eine Normalengleichung hat je die Gestalt

[mm] (\vec{x}-\vec{p})*\vec{n}=0 [/mm]

Das hat den Hintergrund, dass jeder Vektor in der Ebene zum Normalenvektor ortthogonal oder der Nullvektor ist. Also gilt obige Gleichung für jeden Punkt X einer Ebene.

Nun ist auf der anderen Seite

[mm] cos\phi=\bruch{d}{|\vec{x}|} [/mm] <=>

[mm] d=|\vec{x}|*cos\phi [/mm]

wobei

[mm] \phi: [/mm] Winkel zwischen dem Normalenvektor und dem Ortsvektor eines Punktex [mm] X\in{E} [/mm]
d: der Abstand Ebene-Ursprung

sein sollen. Wenn du jetzt oben für [mm] cos\phi [/mm] noch die Vektoren [mm] \vec{n} [/mm] und [mm] \vec{x} [/mm] einsetzt, bekommst du die gewünschte Aussage.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]