Hessenbergmat.&Wachstumsfaktor < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 01:54 Sa 01.12.2012 | Autor: | Lena23 |
Aufgabe | Sei [mm] A\in \IR^{nxn} [/mm] eine obere Hessenbergmatrix, d.h [mm] a_{ij}=0 [/mm] für alle i>j+1. Zeigen Sie, dass die Elemente der Matrix [mm] A^{k}\in \IR^{nxn}, [/mm] welche durch k Schritte des Gauß-Algorithmus mit partieller Pivotisierung entstehen, die Ungleichung
[mm] max_{i,j} |a_{ij}^{k}| \le(k [/mm] + [mm] 1)max_{i,j} |a_{ij}|
[/mm]
erfüllen. Was bedeutet die Aussage für den Wachstumsfaktor
[mm] \rho [/mm] = [mm] max_{i,j,k} \bruch{|a_{ij}^k|}{||A||_\infty}? [/mm] |
Hallo!
Leider konnte mir beim letzten Mal, als ich diese Frage gestellt habe, keiner helfen, also versuche ich es nochmal ;)
Das einzige, was mir zu dieser Aufgabe einfällt, sind ganz viele Fragezeichen. Ich hoffe, mir kann jemand helfen.
LG Lena
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 22:33 So 02.12.2012 | Autor: | Lena23 |
Hat denn wirklich niemand einen Tipp, wie ich diese Aufgabe lösen könnte? :(
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Di 04.12.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 01:16 Mo 03.12.2012 | Autor: | Lena23 |
Also zum zweiten Teil der Aufgabe kann ich sagen, dass bei einer oberen Hessenbergmatrix der Wachstumsfaktor [mm] \rho_{n} \le [/mm] n ist. Aber was muss ich beim ersten Teil der Aufgabe machen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 Mi 05.12.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:42 Di 04.12.2012 | Autor: | Marcel |
Hallo,
> Sei [mm]A\in \IR^{nxn}[/mm] eine obere Hessenbergmatrix, d.h
> [mm]a_{ij}=0[/mm] für alle i>j+1. Zeigen Sie, dass die Elemente der
> Matrix [mm]A^{k}\in \IR^{nxn},[/mm] welche durch k Schritte des
> Gauß-Algorithmus mit partieller Pivotisierung entstehen,
> die Ungleichung
> [mm]max_{i,j} |a_{ij}^{k}| \le(k[/mm] + [mm]1)max_{i,j} |a_{ij}|[/mm]
>
> erfüllen. Was bedeutet die Aussage für den
> Wachstumsfaktor
> [mm]\rho[/mm] = [mm]max_{i,j,k} \bruch{|a_{ij}^k|}{||A||_\infty}?[/mm]
>
> Hallo!
>
> Leider konnte mir beim letzten Mal, als ich diese Frage
> gestellt habe, keiner helfen, also versuche ich es nochmal
> ;)
> Das einzige, was mir zu dieser Aufgabe einfällt, sind
> ganz viele Fragezeichen. Ich hoffe, mir kann jemand
> helfen.
ich kann Dir sagen, wie Dir hier eher geholfen wird: Schreibe mal Deine
Fragen auf, die die vielen Fragezeichen induzierten. Diese wirst Du doch
sicher formuliert bekommen. Denn einfach nur sagen: "Ich sitze hier und
denke nur: ??????????" zeigt eigentlich eher: "Eigentlich finde ich die
Aufgabe total uninteressant, soll doch jemand anderes drüber
nachdenken - ich habe keine Lust dazu. Ich will ja noch nicht mal die
Fragestellung der Aufgabe verstehen..."
Wenn Du aber sagst: "Okay: Ich weiß, dass [mm] $\|A\|_\infty$ [/mm] definiert wurde
wie folgt:
...
Den Gaußalgorithmus verstehe ich. Warum heißt denn die Matrix [mm] $A\,$ [/mm]
obere Hessenbergmatrix? Ist das nicht sowas wie eine obere
Dreiecksmatrix, bei welcher auf der darauffolgenden Diagonalen auch
Nichtnulleinträge erlaubt sind? Oder übersehe ich da etwas? Den
Gaußalgo. verstehe ich; aber was ist denn mit "partieller Pivotisierung" gemeint?"
Derartige Fragen kannst Du doch formulieren...
Gruß,
Marcel
|
|
|
|