matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraHilbert Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Hilbert Reihe
Hilbert Reihe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilbert Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Mi 04.06.2008
Autor: MatzeI

Hallo,

ich weiß, dass für eine graduierte k-Algebra $A$ mit [mm] $A=\bigoplus_{n \geq 0} A_{n}$ [/mm] die Hilbertreihe definiert ist durch:

[mm] $H(A:k)=\sum_{n\geq 0}dim_{k}A_{n}\cdot t^{n}$, [/mm]

aber ich habe keine Ahnung wozu das da ist.
Was berechne ich damit denn?
Wofür braucht man das?


Grüße Matze

Ich habe diese Frage in keinem anderen Internetforum gestellt.

        
Bezug
Hilbert Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Di 10.06.2008
Autor: felixf

Hallo Matze

> ich weiß, dass für eine graduierte k-Algebra [mm]A[/mm] mit
> [mm]A=\bigoplus_{n \geq 0} A_{n}[/mm] die Hilbertreihe definiert ist
> durch:
>  
> [mm]H(A:k)=\sum_{n\geq 0}dim_{k}A_{n}\cdot t^{n}[/mm],
>  
> aber ich habe keine Ahnung wozu das da ist.
> Was berechne ich damit denn?
> Wofür braucht man das?

Die Hilbertreihe ist eine Invariante der Algebra $A$ (insbesondere bleibt sie unter Isomorphie erhalten). Allgemein betrachtet man Invarianten, um mit ihnen Objekte zu klassifizieren oder zumindest Eigenschaften der Objekte mit Hilfe der Invarianten zu beschreiben. Ein Beispiel fuer eine solche Invariante ist die Dimension eines Vektorraums, oder die Laenge einer Basis einer freien Algebra. Oder halt die Hilbertreihe einer Algebra.

LG Felix


Bezug
                
Bezug
Hilbert Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 25.06.2008
Autor: MatzeI

Hallo Felix,
>  
> Die Hilbertreihe ist eine Invariante der Algebra [mm]A[/mm]
> (insbesondere bleibt sie unter Isomorphie erhalten).
> Allgemein betrachtet man Invarianten, um mit ihnen Objekte
> zu klassifizieren oder zumindest Eigenschaften der Objekte
> mit Hilfe der Invarianten zu beschreiben. Ein Beispiel fuer
> eine solche Invariante ist die Dimension eines Vektorraums,
> oder die Laenge einer Basis einer freien Algebra. Oder halt
> die Hilbertreihe einer Algebra.
>  

Ich habe mir deine Antwort ein paar mal durch den Kopf gehen lassen und doch noch ein paar Fragen dazu...
Du erwähnst hier als Beispiel für eine Invariante die Länge der Basis einer freien Algebra. Gibt es denn einen Zusammenhang zwischen der Hilbertreihe einer freien Algebra und der Länge ihrer Basis?
Wofür steht die Variable t in der Hilbertreihe? Was kann ich dafür einsetzen?

Grüße  Matze

Bezug
                        
Bezug
Hilbert Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 25.06.2008
Autor: felixf

Hallo Matze

> > Die Hilbertreihe ist eine Invariante der Algebra [mm]A[/mm]
> > (insbesondere bleibt sie unter Isomorphie erhalten).
> > Allgemein betrachtet man Invarianten, um mit ihnen Objekte
> > zu klassifizieren oder zumindest Eigenschaften der Objekte
> > mit Hilfe der Invarianten zu beschreiben. Ein Beispiel fuer
> > eine solche Invariante ist die Dimension eines Vektorraums,
> > oder die Laenge einer Basis einer freien Algebra. Oder halt
> > die Hilbertreihe einer Algebra.
>  >  
> Ich habe mir deine Antwort ein paar mal durch den Kopf
> gehen lassen und doch noch ein paar Fragen dazu...
>  Du erwähnst hier als Beispiel für eine Invariante die
> Länge der Basis einer freien Algebra. Gibt es denn einen
> Zusammenhang zwischen der Hilbertreihe einer freien Algebra
> und der Länge ihrer Basis?

Keine Ahnung. Ich hab noch nie mit solchen Hilbertreihen gearbeitet.

>  Wofür steht die Variable t in der Hilbertreihe? Was kann
> ich dafür einsetzen?

Im Prinzip ist es erstmal ein formaler Parameter. Es ist nichtmals klar ob die Reihe einen positiven Konvergenzradius besitzt. Und selbst wenn, tut man meist nichts konkretes einsetzen, es interessiert eher die Reihe als solche.

(Solche Reihen heissen uebrigens auch erzeugende Funktionen bzw. generating functions.)

Eventuell sagt der Konvergenzradius auch etwas ueber die Algebra aus. Nehmen wir dochmal ein Beispiel: $A = k[x]$. Dann ist $H(A : k) = [mm] \sum_{n=0}^\infty t^n [/mm] = [mm] \frac{1}{1 - t}$. [/mm] Die Reihe hat also Konvergenzradius 1 und ist `in Wirklichkeit' eine rationale Funktion.

Mal ein weiteres Beispiel, $A = k[x, y]$. Dann ist $H(A : k) = [mm] \sum_{n=0}^\infty [/mm] (n + 1) [mm] t^n [/mm] = [mm] \left( \sum_{n=0}^\infty t^{n+1} \right)' [/mm] = [mm] \left( \sum_{n=0}^\infty t^n - 1 \right)' [/mm] = [mm] \left( \frac{1}{1 - t} - 1 \right)' [/mm] = [mm] \frac{1}{(1 - t)^2}$. [/mm] Die Reihe hat also Konvergenzradius 1 und ist `in Wirklichkeit' eine rationale Funktion.

Ein drittes Beispiel, $A = k[x, y, z]$. Dann ist $H(A : k) = [mm] \sum_{n=0}^\infty \binom{n + 2}{2} t^n [/mm] = [mm] \frac{1}{2!} \left( \sum_{n=2}^\infty t^n \right)^{(2)} [/mm] = [mm] \frac{1}{2!} \left( \frac{1}{1 - t} - 1 - t \right)^{(2)} [/mm] = [mm] \frac{1}{2} \cdot \frac{1}{(1 - t)^3}$. [/mm] Die Reihe hat also Konvergenzradius 1 und ist `in Wirklichkeit' eine rationale Funktion. Und genauso kannst du allgemeiner fortfahren.

In dem Fall, dass $A$ ein Polynomring in $n$ Unbestimmten ist, dann ist $H(A : k)$ eine rationale Funktion mit Konvergenzradius 1 und einem $n + 1$-fachem Pol in $t = 1$.

Kannst ja mal versuchen die Hilbertreihe fuer $A = [mm] k[x_1, \dots, x_n] [/mm] / (f)$ zu bestimmen, wobei $f$ ein homogenes Polynom von Grad $k$ ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]