matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikHilfe Binomialapprox.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Hilfe Binomialapprox.
Hilfe Binomialapprox. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe Binomialapprox.: Alte Klausuraufgabe
Status: (Frage) beantwortet Status 
Datum: 23:04 Fr 11.07.2008
Autor: tnd

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Für folgende Aufgabe könnte ich einen Lösungshinweis gebrauchen:

Also Afg. in kürze Packungen mit jeweils 80 Schrauben werden getestet und dürfen maximal 15 unbrauchbare Schrauben enthalten.
Zum Testen werden 6 Schrauben ohne zurücklegen entnommen, sind 2 unbrauchbar geht die Packung an den Hersteller zurück.

Berechnen Sie die Wahrscheinlichkeit eine Packung zurückzuweisen, wenn sie tatsächlich 15 unbrauchbare Schrauben enthält

a) exakt
b) mit Hilfe der Binomialapproximation der hypergeometrischen Veteilung
c) mit Hilfe des Poissenschen Grenzwertsatzes

Wo ich nicht weiter weiss ist eben der Nachsatz mit den tatsächlich 15 Schrauben.
Normal würde ich so Vorgehen
a) Hypergeometrische Verteilung mit N = 80; M = 2; n=6
b) Binomialverteilung p=M/N = 1/40; n=6
c) hier könnte auch eien hinweis gebrauchen

MfG

Marius

        
Bezug
Hilfe Binomialapprox.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Sa 12.07.2008
Autor: Martinius

Hallo,

> Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Für folgende Aufgabe könnte ich einen Lösungshinweis
> gebrauchen:
>  
> Also Afg. in kürze Packungen mit jeweils 80 Schrauben
> werden getestet und dürfen maximal 15 unbrauchbare
> Schrauben enthalten.
>  Zum Testen werden 6 Schrauben ohne zurücklegen entnommen,
> sind 2 unbrauchbar geht die Packung an den Hersteller
> zurück.
>  
> Berechnen Sie die Wahrscheinlichkeit eine Packung
> zurückzuweisen, wenn sie tatsächlich 15 unbrauchbare
> Schrauben enthält
>  
> a) exakt
>  b) mit Hilfe der Binomialapproximation der
> hypergeometrischen Veteilung
>  c) mit Hilfe des Poissenschen Grenzwertsatzes
>  
> Wo ich nicht weiter weiss ist eben der Nachsatz mit den
> tatsächlich 15 Schrauben.
>  Normal würde ich so Vorgehen
>  a) Hypergeometrische Verteilung mit N = 80; M = 2; n=6

Die Verteilungsfunktion einer Hypergeometrischen Verteilung H(80,15,6), bei der eine Probe aus 6 Schrauben, welche, wenn sie zwischen 2 und 6 unbrauchbare Schrauben enthält zurückgewiesen wird, sähe so aus:

[mm] $F(x)=\sum_{k}\bruch{{M \choose k}*{N-M \choose n-k}}{{N \choose n}}=\sum_{k=2}^{6}\bruch{{15 \choose k}*{65 \choose 6-k}}{{80 \choose 6}}=31,28$ [/mm] %


Alternativ könnte man sagen, die Probe wird zurückgewiesen, wenn sie nur zwischen 0 und 4 brauchbare Schrauben (von einer Stichprobe mit Umfang 6) enthält: H(80,65,6)

[mm] $F(x)=\sum_{k=0}^{4}\bruch{{65 \choose k}*{15 \choose 6-k}}{{80 \choose 6}}=31,28$ [/mm] %




>  b) Binomialverteilung p=M/N = 1/40; n=6

Eine Verteilungsfunktion einer Binomialverteilung [mm] B\left(6,\bruch{15}{80}\right) [/mm] mit [mm] p=\bruch{M}{N}=\bruch{15}{80} [/mm] und n=6 (obwohl die Faustregel nicht erfüllt ist).

[mm] $F(x)=\sum_{n=2}^{6}{6 \choose n}*\left(\bruch{15}{80}\right)^n*\left(\bruch{65}{80}\right)^{6-n}=31,39$% [/mm]



>  c) hier könnte auch eien hinweis gebrauchen

Dieser []Link ist der Meinung, der Poissonsche Grenzwertsatz ist eine Annäherung der Binomialverteilung an eine Poissonverteilung.

[mm] $\mu [/mm] = [mm] n*\bruch{M}{N}=6*\bruch{15}{80}=1,125$ [/mm]

[mm] $F(x)=e^{-1,125}*\sum_{k=2}^{6} \bruch{1,125^{k}}{k!}=30,99$% [/mm]

Bemerkung: auch hier ist die Faustregel nicht erfüllt.



  

> MfG
>  
> Marius


LG, Martinius

Bezug
                
Bezug
Hilfe Binomialapprox.: Frage wurde beantwortet!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Sa 12.07.2008
Autor: tnd

Hallo,

danke für die schnelle und ausführliche Antwort Martinius.


MfG

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]