matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikHilfestellung zu Regula Falsi
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Finanzmathematik" - Hilfestellung zu Regula Falsi
Hilfestellung zu Regula Falsi < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfestellung zu Regula Falsi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Di 18.01.2005
Autor: DrOetker

Hallo!
Habe einen Kalkulationszinszfuß von 7,8%
Habe i1=0.08 und i2=0,075 gewählt. Danach erhalte ich K1=-367,02 und K2=196,19
Setze ich dies in Die Formel

iappr =  i^+ -  [mm] \bruch{G^+(i^+ - i^-)}{G^+ - g^-}\bruch [/mm]

erhalte ich 1,8167.
Habe ich a die Werte richtig eingesetzt und b, was sagt das Ergebnis aus???

        
Bezug
Hilfestellung zu Regula Falsi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mi 19.01.2005
Autor: Astrid

Hallo!


>  Habe einen Kalkulationszinszfuß von 7,8%
>  Habe i1=0.08 und i2=0,075 gewählt. Danach erhalte ich
> K1=-367,02 und K2=196,19
>  Setze ich dies in Die Formel
>  
> iappr =  i^+ -  [mm]\bruch{G^+(i^+ - i^-)}{G^+ - g^-}\bruch [/mm]
>  
>
> erhalte ich 1,8167.
>  Habe ich a die Werte richtig eingesetzt und b, was sagt
> das Ergebnis aus???

Ja, das ist eine gute Frage....
Kannst du bitte etwas genauer schildern, was du eigentlich hier rechnen möchtest? Dann ist deine Chance evtl. höher, eine Antwort zu bekommen..;-) Mir z.B. sagt Regula falsi leider so auf Anhieb nichts.

Viele Grüße
Astrid



Bezug
                
Bezug
Hilfestellung zu Regula Falsi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Mi 19.01.2005
Autor: DrOetker

Hallo!
Ich möchte den internen Zinsfuß bei mehr als zwei Perioden ausrechnen.
Hierzu hat unser Prof. etwas von der Regula Falsi Mehtoder erwähnt.
Habe ich einen Kalkulationszinsfuß von 7,8%, so wähle ich einen Zinssatz, bei dem der Barwert postiv wird und einen bei dem der Barwert negativ wird. Diese Daten sollte ich dann in die Formel eingeben. Leider kann ich mit dem Ergebnis nichts anfangen.

Bezug
        
Bezug
Hilfestellung zu Regula Falsi: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 So 23.01.2005
Autor: Josef

Hallo DrOetker,


>  Habe einen Kalkulationszinszfuß von 7,8%
>  Habe i1=0.08 und i2=0,075 gewählt. Danach erhalte ich
> K1=-367,02 und K2=196,19
>  Setze ich dies in Die Formel
>  
> iappr =  i^+ -  [mm]\bruch{G^+(i^+ - i^-)}{G^+ - g^-}\bruch [/mm]
>  
>
> erhalte ich 1,8167.
>  Habe ich a die Werte richtig eingesetzt und b, was sagt
> das Ergebnis aus???
>  


Es ist jener Zinsfuß zu bestimmten, für den der Kapitalwert gleich Null wird.
Es ergeben sich in der Aufgabe

für 8 % ein Wert von -367,02
für 7,5 % ein Wert von 196,19

Wird eine genauere Bestimmung des internen Zinsfußes verlangt, so kann von der linearen Interpolation eine genauere Eingrenzung erfolgen, indem für verschiedene Zinsfüße zwischen 8 % und 7,5 % die entsprechenden Kapitalwerte berechnet werden.

Also  muß der interne Zinsfuß zwischen 8 % und 7,5 % liegen. Aufgrund der Relation

[mm]\bruch{-367,02-0}{-367,02-196,19}[/mm] =  [mm]\bruch{8-p}{8-7,5}[/mm]

ergibt sich ein Ergebnis von p = 7,67417 %.


Der Kalkulationszinsfuß liegt jedoch bei 7,8 %. Die Investition gilt also nicht als vorteilhaft.

Bezug
                
Bezug
Hilfestellung zu Regula Falsi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mo 24.01.2005
Autor: DrOetker

Hi!
Danke für deine Hilfe, aber ich glaube ich habe schlechte Nachrichten. Ich peil es nicht!
Einen Fehler habe ich jetzt bemerkt. Ich habe das mit dem G+ und G- etwas vertauscht, aber wieso steht bei dir in der ersten Zeile -367,02-0?
Und wo zauberst du die 7,67417 % her?

Bezug
                        
Bezug
Hilfestellung zu Regula Falsi: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mo 24.01.2005
Autor: Josef

Hallo DrOetker,


>

>  Einen Fehler habe ich jetzt bemerkt. Ich habe das mit dem
> G+ und G- etwas vertauscht, aber wieso steht bei dir in der
> ersten Zeile -367,02-0?
>  Und wo zauberst du die 7,67417 % her?
>  

K1 = -367,02
K2 ? 196,19

Die Bestimmung des internen Zinsfußes durch lineare Interpolation ist um so genauer, je näher die Kapitalwerte G^+ und G^- bei G = 0 liegen.

Meine Gleichung:

[mm]\bruch{-367,02 - 0}{-367,02 - 196,19}[/mm] = [mm]\bruch{8-p}{8-7,5}[/mm]

Gleichung nach p auflösen:

[mm]\bruch{-367,02}{-563,21}[/mm] = [mm]\bruch{8-p}{0,5}[/mm]

0,6516574 = [mm]\bruch{8-p}{0,5}[/mm]

0,3258287 = 8-p
p = 7,67417



Bein Verfahren nach der Regula- Falsi errechnet man durch lineare Interpolation aus beiden Startwerten [mm] x_0 [/mm] = 7,5 und [mm] x_1 [/mm] = 8 einen besseren Näherungswert [mm] x_2. [/mm] Man nutzt dabei das Wissen über die beiden Funktionswerte (z.B.  g(7,5) und g(8) zur Errechnung des Wertes [mm] x_2. [/mm] Man führt das Verfahren fort, indem man den nun überflüssigen Wert [mm] x_0 [/mm] oder [mm] x_1 [/mm] durch den errechneten "besonderen" Wert [mm] x_2 [/mm] ersetzt.


Bei deiner Aufgabenstellung  fehlt jedoch die Funktionsgleichung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]