Hinführung zur JNF < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:01 Mi 19.08.2009 | Autor: | moerni |
Aufgabe | Sei dim(V)=n, f [mm] \in [/mm] End(V), r:= [mm] \mu_a [/mm] (f;0)
a) Es gibt eine Zahl d mit 0 [mm] \le [/mm] d [mm] \le [/mm] r, so dass gilt:
(1) 0 [mm] \subset [/mm] ker(f) [mm] \subset ker(f^2) \subset [/mm] ... [mm] \subset ker(f^d)=ker(f^d+1)=...
[/mm]
(2) V [mm] \supset [/mm] im(f) [mm] \supset im(f^2) \supset [/mm] ... [mm] \supset im(f^d)=im(f^d+1)=...
[/mm]
Setzte [mm] U:=ker(f^d) [/mm] und [mm] W:=im(f^d). [/mm] Es gilt weiter:
b) dim(U)=r und dim(W)=n-r
c) V=U [mm] \oplus [/mm] W
d) U,W sind f-invariant, f eingeschränkt auf U ist nilpotent, f eingeschränkt auf W ist bijektiv |
Hallo,
Es geht um das obige Lemma, das hinführend zur Jordannormalform ist.
Meine Fragen:
zu a): Die Inklusionsketten konnte ich nachweisen. ok. Die Ketten müssen deswegen endlich sein, weil ja V endlichdimensional ist. Im Extremfall könnte es also sein, dass nach i - facher Ausführung von f [mm] ker(f^{i})=V [/mm] ist, oder? Was ich nicht nachvollziehen kann: weshalb kann der ker schon vorher "konstant bleiben"? und warum muss d [mm] \le [/mm] r sein?
zum beweisen von b,c,d gehe ich von unten nach oben vor.
Beweisversuch zu d):
Beh: U f-invariant, also zz. [mm] f(ker(f^d)) \subseteq ker(f^d). [/mm] Bew: sei v [mm] \in ker(f^d). [/mm] da [mm] ker(f^d) [/mm] = [mm] ker(f^{d+1}) [/mm] folgt [mm] v\in ker(f^{d+1}). [/mm] Gilt [mm] ker(f^{d+1})=f(ker(f^d))? [/mm] Dann wäre ich fertig. Bei W ginge das ebenso.
Beh: f eingeschränkt auf U nilpotent. Bew: eventuell induktiv? f(kerf)=0, [mm] f^2(kerf^2)=0 [/mm] usw. bis [mm] f^d(kerf^d)=0, [/mm] also f eingeschränkt auf U nilpotent mit Index d.
Beh: f eingeschränkt auf W bijektiv. Bew: f(W)=W, also surjektiv, kerW=0 also injektiv, zusammen bijektiv ?
bei c) habe ich leider keinen Durchblick. Im Skript wird nur stichhaltig angedeutet, dass der Schnitt von U und W null ist (warum?) und dimU+dimW=dimV (warum?)
zu b) Angenommen, V=U [mm] \oplus [/mm] W sei bewiesen. Dann ist f ähnlich zu einer Matrix der Gestalt
[mm] \pmat{ f eingeschr. U & 0 \\ 0 & f eingeschr. W }
[/mm]
dann wäre [mm] p_f(T)=T^{dim(U)}*P_eing.W(T)
[/mm]
P_eingW kann T als Faktor nicht enthalten (warum?), also dim(U)=r.
letzte Frage: inwiefern bereitet dieses Lemma die JNF vor?
Über eine hilfreiche Antwort wäre ich sehr dankbar,
Grüße, moerni
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:59 Fr 21.08.2009 | Autor: | felixf |
Hallo moerni!
> Sei dim(V)=n, f [mm]\in[/mm] End(V), r:= [mm]\mu_a[/mm] (f;0)
Was ist [mm] $\mu_a(f; [/mm] 0)$?
> a) Es gibt eine Zahl d mit 0 [mm]\le[/mm] d [mm]\le[/mm] r, so dass gilt:
> (1) 0 [mm]\subset[/mm] ker(f) [mm]\subset ker(f^2) \subset[/mm] ...
> [mm]\subset ker(f^d)=ker(f^d+1)=...[/mm]
> (2) V [mm]\supset[/mm] im(f)
> [mm]\supset im(f^2) \supset[/mm] ... [mm]\supset im(f^d)=im(f^d+1)=...[/mm]
>
> Setzte [mm]U:=ker(f^d)[/mm] und [mm]W:=im(f^d).[/mm] Es gilt weiter:
> b) dim(U)=r und dim(W)=n-r
> c) V=U [mm]\oplus[/mm] W
> d) U,W sind f-invariant, f eingeschränkt auf U ist
> nilpotent, f eingeschränkt auf W ist bijektiv
> Hallo,
> Es geht um das obige Lemma, das hinführend zur
> Jordannormalform ist.
>
> Meine Fragen:
>
> zu a): Die Inklusionsketten konnte ich nachweisen. ok. Die
> Ketten müssen deswegen endlich sein, weil ja V
> endlichdimensional ist.
> Im Extremfall könnte es also sein,
> dass nach i - facher Ausführung von f [mm]ker(f^{i})=V[/mm] ist,
> oder? Was ich nicht nachvollziehen kann: weshalb kann der
> ker schon vorher "konstant bleiben"? und warum muss d [mm]\le[/mm] r
> sein?
Zeige: wenn der Kern einmal gleich bleibt an einer Stelle, bleibt er von dort aus immer gleich.
Um $d [mm] \le [/mm] r$ zu zeigen: du kannst zu jedem Schritt, wo die Dimension des Kerns echt groesser wird, einen Vektor dazunehmen, so dass du ein linear unabhaengiges System der Laenge $d$ bekommst. Damit (und mit der Bedeutung von $r$) kommst eventuell weiter.
> zum beweisen von b,c,d gehe ich von unten nach oben vor.
> Beweisversuch zu d):
> Beh: U f-invariant, also zz. [mm]f(ker(f^d)) \subseteq ker(f^d).[/mm]
> Bew: sei v [mm]\in ker(f^d).[/mm] da [mm]ker(f^d)[/mm] = [mm]ker(f^{d+1})[/mm] folgt
> [mm]v\in ker(f^{d+1}).[/mm] Gilt [mm]ker(f^{d+1})=f(ker(f^d))?[/mm] Dann
> wäre ich fertig. Bei W ginge das ebenso.
Gehe lieber so vor: da [mm] $\ker f^{d+1} [/mm] = [mm] \ker f^d$ [/mm] ist $v [mm] \in \ker f^{d+1}$; [/mm] insb. gilt [mm] $f^{d+1}(v) [/mm] = 0$. Nun ist $0 = [mm] f^d(f(v))$, [/mm] also $f(v) [mm] \in \ker f^d$.
[/mm]
> Beh: f eingeschränkt auf U nilpotent. Bew: eventuell
> induktiv? f(kerf)=0, [mm]f^2(kerf^2)=0[/mm] usw. bis [mm]f^d(kerf^d)=0,[/mm]
> also f eingeschränkt auf U nilpotent mit Index d.
Nun, das ist doch ganz einfach. Du musst zeigen, dass es ein $m [mm] \in \IN$ [/mm] gibt mit [mm] $(f|_U)^m [/mm] = 0$. Wenn $v [mm] \in [/mm] U$ ist, muss also [mm] $f^m(v) [/mm] = 0$ sein, also $v [mm] \in \ker f^m$. [/mm] Also, wie kannst du $m$ waehlen?
> Beh: f eingeschränkt auf W bijektiv. Bew: f(W)=W, also
> surjektiv, kerW=0 also injektiv, zusammen bijektiv ?
Wieso ist $f(W) = W$? Das musst du schon zeigen. Und warum ist [mm] $\ker f|_W [/mm] = 0$?
Es reicht uebrigens entweder surjektiv oder injektiv zu zeigen (Dimensionsformel!).
> bei c) habe ich leider keinen Durchblick. Im Skript wird
> nur stichhaltig angedeutet, dass der Schnitt von U und W
> null ist (warum?) und dimU+dimW=dimV (warum?)
Zweiteres ist gerade die Dimensionsformel!
Ersteres: sei $v [mm] \in [/mm] U [mm] \cap [/mm] W$, also [mm] $\exists [/mm] w [mm] \in [/mm] V : [mm] f^d(w) [/mm] = v$ (da $v$ im Bild von [mm] $f^d$ [/mm] liegt) und es gilt [mm] $f^d(v) [/mm] = 0$; es gilt also [mm] $f^{2 d}(w) [/mm] = [mm] f^d(f^d(w)) [/mm] = 0$. Aber nun ist [mm] $\ker f^{2 d} [/mm] = [mm] \ker f^d$ [/mm] (warum?).
> zu b) Angenommen, V=U [mm]\oplus[/mm] W sei bewiesen. Dann ist f
> ähnlich zu einer Matrix der Gestalt
> [mm]\pmat{ f eingeschr. U & 0 \\ 0 & f eingeschr. W }[/mm]
> dann
> wäre [mm]p_f(T)=T^{dim(U)}*P_eing.W(T)[/mm]
> P_eingW kann T als Faktor nicht enthalten (warum?), also
> dim(U)=r.
Also mit [mm] $P_{irgendwas}$ [/mm] ist das charakteristische Polynom gemeint?
So, wenn [mm] $P_{f|_W}$ [/mm] den Faktor $T$ hat, dann hat [mm] $f|_W$ [/mm] den Eigenwert 0. Was bedeutet das?
> letzte Frage: inwiefern bereitet dieses Lemma die JNF vor?
Du kannst damit die Existenz der Jordanzerlegung beweisen. Ist [mm] $\lambda$ [/mm] ein Eigenwert von $f$, so betrachtest du $f - [mm] \lambda id_V$; [/mm] das $U$ dazu ist dann der verallgemeinerte Eigenraum von $f$ zum Eigenwert [mm] $\lambda$, [/mm] und du siehst dass [mm] $\dim [/mm] U = [mm] \mu_a(f; \lambda)$ [/mm] ist.
Jetzt faehrst du per Induktion auf [mm] $f|_W$ [/mm] fort (dieser Endomorphismus hat den Eigenwert [mm] $\lambda$ [/mm] nicht mehr).
LG Felix
|
|
|
|