matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenHintereinanderausführung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Hintereinanderausführung
Hintereinanderausführung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hintereinanderausführung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Mo 08.03.2010
Autor: s-jojo

Aufgabe
f: [mm] A\to [/mm] B, g: [mm] B\to [/mm] C, h: [mm] C\to [/mm] D Abbildungen, dann gilt:
sind f und g bijektiv, so ist auch [mm] (g\circ [/mm] f) bijetiv und es gilt [mm] (g\circ [/mm] f)^-1 = f^-1 [mm] \circ [/mm] g^-1.

Hi :)
Das war jetzt gerade ein Satz aus einem Buch, ich versteh sie an sich, aber der folgende Beweis ist für mich unverständlich.

Beweis:
(f [mm] \circ [/mm] g)^-1 [mm] \circ [/mm] (f [mm] \circ [/mm] g) = Id [mm] \gdw (f\circ [/mm] g) ^-1 [mm] \circ [/mm] f [mm] \circ [/mm] g= Id
[mm] \gdw [/mm] (f [mm] \circ [/mm] g) ^-1 [mm] \circ [/mm] f = g^-1
[mm] \gdw [/mm] (f [mm] \circ [/mm] g) ^-1 = g^-1 [mm] \circ [/mm] f^-1

Meine Frage:

Ich soll bei (f [mm] \circ [/mm] g)^-1 zuerst g mit f verknüpfen, richtig? Aber wie soll das gehen, weil g geht von B nach C, f jedoch von A nach B! Selbst wenn ich sofort die Umkehrfunktion machen würde, hätte ich das gleiche Problem bei (f [mm] \circ [/mm] g)...
Vor allem versteh ich nicht, dass im Beweis etwas anderes steht als bei dem Satz, also die Reihenfolge ist ja ganz vertauscht. Beim Satz steht (g [mm] \circ [/mm] f)^-1, beim Beweis andersrum...

Hmm... kann mir jemand helfen? =)

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. ^^)

        
Bezug
Hintereinanderausführung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mo 08.03.2010
Autor: steppenhahn

Hallo!

> f: [mm]A\to[/mm] B, g: [mm]B\to[/mm] C, h: [mm]C\to[/mm] D Abbildungen, dann gilt:
>  sind f und g bijektiv, so ist auch [mm](g\circ[/mm] f) bijetiv und
> es gilt [mm](g\circ[/mm] f)^-1 = f^-1 [mm]\circ[/mm] g^-1.
>  Hi :)
>  Das war jetzt gerade ein Satz aus einem Buch, ich versteh
> sie an sich, aber der folgende Beweis ist für mich
> unverständlich.
>
> Beweis:
>  (f [mm]\circ[/mm] g)^-1 [mm]\circ[/mm] (f [mm]\circ[/mm] g) = Id [mm]\gdw (f\circ[/mm] g) ^-1
> [mm]\circ[/mm] f [mm]\circ[/mm] g= Id
>  [mm]\gdw[/mm] (f [mm]\circ[/mm] g) ^-1 [mm]\circ[/mm] f = g^-1
>  [mm]\gdw[/mm] (f [mm]\circ[/mm] g) ^-1 = g^-1 [mm]\circ[/mm] f^-1
>  
> Meine Frage:
>  
> Ich soll bei (f [mm]\circ[/mm] g)^-1 zuerst g mit f verknüpfen,
> richtig? Aber wie soll das gehen, weil g geht von B nach C,
> f jedoch von A nach B! Selbst wenn ich sofort die
> Umkehrfunktion machen würde, hätte ich das gleiche
> Problem bei (f [mm]\circ[/mm] g)...
>  Vor allem versteh ich nicht, dass im Beweis etwas anderes
> steht als bei dem Satz, also die Reihenfolge ist ja ganz
> vertauscht. Beim Satz steht (g [mm]\circ[/mm] f)^-1, beim Beweis
> andersrum...

Das lässt sich einfach beantworten:
Du hast recht, und im Buch wurde geschludert.
Bei einem korrekten Beweis müsste es vertauscht sein und mit der Aussage

[mm] $(g\circ f)^{-1}\circ (g\circ [/mm] f) = id$

beginnen.

Grüße,
Stefan

Bezug
                
Bezug
Hintereinanderausführung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Mo 15.03.2010
Autor: s-jojo

Da bin ich ja erleichtert :D ich dachte schon ich hätte überhaupt nichts kapiert ^^ thx

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]