matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieHochgehobene Lösungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Hochgehobene Lösungen
Hochgehobene Lösungen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hochgehobene Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 24.11.2011
Autor: Schmetterfee

Hallöchen,

ich habe ein Problem mit einem Beweis aus der Vorlesung ersteinmal vorne weg die Definition um die es geht.

Die Lösung r mod [mm] p^{m} [/mm] kann hochgehoben werden zu einer Lösung s mod [mm] p^{m+1}, [/mm] wenn f(s) [mm] \equiv [/mm] 0 mod [mm] p^{m+1} [/mm] und [mm] \phi_{m}(s)=r. [/mm]

nun zum Satz: Wenn f'(r) nicht [mm] \equiv [/mm] (weiß nicht wie man das Zeichen negiert hier im Formeleditor) mod p, dann kann r hochgehoben werden.

Beweis:
Schreibe die Taylorentwicklung f(x+h)=f(x)+f'(x)h+...+ [mm] \bruch{f^{(n)}(x)}{n!} h^{n}. [/mm]
Setzt nun x=r und [mm] h=q^{r} [/mm] mit q [mm] \in \IZ. [/mm]
[mm] \Rightarrow f(r+qp^{m})\equiv [/mm] f(r) [mm] +f'(r)qp^{m} [/mm] mod [mm] p^{m+1}. [/mm]
wie kommt man auf diese darstellung und wo kommt das p mit mal her?
Haben f(r)=k [mm] p^{m} [/mm] mit k [mm] \in \IZ. [/mm]
Wieso haben wir das denn woher denn?
[mm] \Rightarrow f(r)+f'(r)qp^{m}=(k+f'(r)g)p^{m}. [/mm]
Wähle nun q, sodass: f'(r)q+k=0 mod p, dass ist möglich wegen f'(r) nicht [mm] \equiv [/mm] 0 mod p.
Wieso ist das deswegen möglich? Das verstehe ich leider nicht ganz.
Setzt [mm] s=r+qp^{m} [/mm]
So und wieso folgt hieraus das gewünschte? Ich habe irgendwie das Gefühl da fehlt noch was damit ich das folgern kann.

Ich hoffe mir mag jemand erklären, wie das alles funktioniert denn ich verstehe diesen Beweis wirklich kaum. ich bin über jede Hilfe dankbar.

LG Schmetterfee

        
Bezug
Hochgehobene Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Sa 26.11.2011
Autor: felixf

Moin!

> ich habe ein Problem mit einem Beweis aus der Vorlesung
> ersteinmal vorne weg die Definition um die es geht.
>  
> Die Lösung r mod [mm]p^{m}[/mm] kann hochgehoben werden zu einer
> Lösung s mod [mm]p^{m+1},[/mm] wenn f(s) [mm]\equiv[/mm] 0 mod [mm]p^{m+1}[/mm] und
> [mm]\phi_{m}(s)=r.[/mm]

Und [mm] $\phi_m [/mm] : [mm] \IZ/p^{m+1}\IZ \to \IZ/p^m\IZ$ [/mm] ist die Reduktion modulo [mm] $p^m$? [/mm]

> nun zum Satz: Wenn f'(r) nicht [mm]\equiv[/mm] (weiß nicht wie man
> das Zeichen negiert hier im Formeleditor) mod p, dann kann
> r hochgehoben werden.

Einfach \not\equiv, das ergibt [mm] $\not\equiv$. [/mm]

> Beweis:
>  Schreibe die Taylorentwicklung f(x+h)=f(x)+f'(x)h+...+
> [mm]\bruch{f^{(n)}(x)}{n!} h^{n}.[/mm]

Ich hoffe, hier ist die Taylorentwicklung in [mm] $\IZ[x]$ [/mm] gemeint...

>  Setzt nun x=r und [mm]h=q^{r}[/mm]
> mit q [mm]\in \IZ.[/mm]

Das glaube ich nicht.

In der naechsten Zeile ist $h = q [mm] p^m$. [/mm] Das ist nicht [mm] $q^r$. [/mm]

>  [mm]\Rightarrow f(r+qp^{m})\equiv[/mm] f(r)
> [mm]+f'(r)qp^{m}[/mm] mod [mm]p^{m+1}.[/mm]
>  wie kommt man auf diese darstellung und wo kommt das p mit
> mal her?

Nach Taylor ist $f(r + q [mm] p^m) [/mm] = f(r) + f'(r) q [mm] p^m [/mm] + [mm] \frac{f''(r)}{2} q^2 p^{2m} [/mm] + [mm] \frac{f'''(r)}{6} q^3 p^{3 m} [/mm] + ...$. Weiter hinten kommen immer hoehere Potenzen von $p$ vor.

Da du das ganze modulo [mm] $p^{m+1}$ [/mm] anschaust, gilt [mm] $p^{2m} \equiv [/mm] 0$, [mm] $p^{3 m} \equiv [/mm] 0$, und ebenso jede noch hoehere Potenz. Damit bleibt uebrig $f(r + q [mm] p^m) \equiv [/mm] f(r) + f'(r) q [mm] p^m \pmod{p^{m+1}}$. [/mm]

>  Haben f(r)=k [mm]p^{m}[/mm] mit k [mm]\in \IZ.[/mm]
>  Wieso haben wir das
> denn woher denn?

Es gilt $f(r) [mm] \equiv [/mm] 0 [mm] \pmod{p^m}$ [/mm] nach Voraussetzung. Damit ist [mm] $p^m$ [/mm] ein Teiler von $f(r) - 0 = f(r)$, womit $f(r) = k [mm] \cdot p^m$ [/mm] ist fuer ein passendes $k [mm] \in \IZ$. [/mm]

>  [mm]\Rightarrow f(r)+f'(r)qp^{m}=(k+f'(r)g)p^{m}.[/mm]
>  Wähle nun
> q, sodass: f'(r)q+k=0 mod p, dass ist möglich wegen f'(r)
> nicht [mm]\equiv[/mm] 0 mod p.
>  Wieso ist das deswegen möglich? Das verstehe ich leider
> nicht ganz.

Du hast eine Gleichung der Art $a x [mm] \equiv [/mm] b [mm] \pmod{p}$. [/mm] Diese hat immer eine Loesung $x$, falls $p [mm] \nmid [/mm] a$ gilt. Das ist dir doch bekannt, oder?

Hier ist $a = f'(r)$, $x = q$, $b = -k$. Du kannst also immer so eni $q$ finden, falls $p [mm] \nmid [/mm] f'(r)$, was gerade $f'(r) [mm] \not\equiv [/mm] 0 [mm] \pmod{p}$ [/mm] bedeutet. Und das hattest du eben vorausgesetzt.

>  Setzt [mm]s=r+qp^{m}[/mm]
>  So und wieso folgt hieraus das gewünschte? Ich habe
> irgendwie das Gefühl da fehlt noch was damit ich das
> folgern kann.

Es gilt doch $f(s) = f(r + q [mm] p^m) \equiv [/mm] f(r) + f'(r) q [mm] p^m \equiv [/mm] k [mm] p^m [/mm] + f'(r) q [mm] p^m [/mm] = (f'(r) q + k) [mm] p^m \pmod{p^{m+1}}$. [/mm] Jetzt ist $f'(r) q + k$ durch $p$ teilbar, womit $(f'(r) q + k) [mm] p^m$ [/mm] durch [mm] $p^{m+1}$ [/mm] teilbar ist, womit $f(s) [mm] \equiv [/mm] (f'(r) q + k) [mm] p^m \equiv [/mm] 0 [mm] \pmod{p^{m+1}}$ [/mm] ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]