Hohlkörper < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | [Dateianhang nicht öffentlich]
Der in Grund- und Aufriss gezeichnete Körper besteht aus einer Halbkugel, einem Zylinder und einem Kegel. Der Körper wird so gehalten, dass PQ wagrecht verläuft und halb mit Wasser gefüllt. Wie hoch steht das Wasser in dem Körper wenn man ihn so dreht, dass
a) P unten
b) P oben
liegt?
|
Hallo liebes Forum,
ich habe folgendes gemacht:
[mm] Vhalbkreis=\bruch{2}{3}*\pi*r^{3}=\bruch{2}{3}*\pi*a^{3}
[/mm]
[mm] Vzylinder=\pi*r^{2}*h=\pi*a^{3}
[/mm]
[mm] Vkegel=\bruch{1}{3}*\pi*r^{2}*h=\bruch{1}{3}*\pi*a^{3}
[/mm]
[mm] Vganz=Vhalbkreis+Vzylinder+Vkegel=\pi*a^{3}
[/mm]
habe ich das bis jetzt richtig gemacht? Und wie rechnet man nun die Füllhöhe?
Viele Grüsse und vielen Dank
MatheSckell
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:33 Di 13.03.2007 | Autor: | cReam |
Hallo,
2 Sachen:
1.) Nenn es doch Halbkugel oder so, damit klar wird das eine Kugel und kein Kreis gemeint ist (nur so rein formal und zum besseren Überblick)
2.) Bei der letzten Rechnung liegt ein kleiner Fehler vor:
Du gehst von diesem Term aus:
2/3 [mm] \pi a^3 [/mm] + [mm] \pi a^3 [/mm] + 1/3 [mm] \pi a^3 [/mm] = [mm] \pi a^3 \* [/mm] ( 2/3 + 1 + 1/3) = 2 [mm] \pi a^3
[/mm]
Ok?
Nun zum nächsten Teil:
Du benötigst das Wasservolumen: 1/2 [mm] \* [/mm] 2 [mm] \pi a^3 [/mm] = [mm] \pi a^3
[/mm]
zu a) Du hast das Wasservolumen von [mm] \pi a^3
[/mm]
Die Kugel fasst 2/3 [mm] \pi a^3, [/mm] das heißt es bleiben noch 1/3 [mm] \pi a^3 [/mm] übrig.
Der Zylinder fasst 1 [mm] \pi a^3, [/mm] d.h. das Wasser belegt genau 1/3 des Zylindervolumens, woraus der Pegel im Zylinder bei 1/3 a steht.
[mm] \Rightarrow [/mm] Höhe des Pegels: 1 1/3 a
zu b)
Das gleiche Wasservolumen
Der Kegel fasst 1/3 [mm] \pi a^3, [/mm] d.h. es bleiben noch 2/3 [mm] \pi a^3
[/mm]
Der Zylinder fasst 1 [mm] \pi a^3, [/mm] d.h. analog zu oben:
[mm] \Rightarrow [/mm] Höhe des Pegels bei 1 2/3 a
[mm] \Rightarrow [/mm] analog wie oben: Höhe des Pegels
Alles verstanden?
Grüße cReam
|
|
|
|